Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(4): 1936-1961, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438802

RESUMO

Induction of DNA damage triggers rapid phosphorylation of the histone H2A.X (γH2A.X). In animals, mediator of DNA damage checkpoint 1 (MDC1) binds γH2A.X through a tandem BRCA1 carboxyl-terminal (tBRCT) domain and mediates recruitment of downstream effectors of DNA damage response (DDR). However, readers of this modification in plants have remained elusive. We show that from the Arabidopsis BRCT domain proteome, BCP1-4 proteins with tBRCT domains are involved in DDR. Through its tBRCT domain BCP4 binds γH2A.X in vitro and localizes to DNA damage-induced foci in an H2A.X-dependent manner. BCP4 also contains a domain that interacts directly with NBS1 and thus acts as a functional counterpart of MDC1. We also show that BCP1, that contains two tBRCT domains, co-localizes with γH2A.X but it does not bind γH2A.X suggesting functional similarity with human PAXIP1. A phylogenetic analysis supports that PAXIP1 and MDC1 in metazoa and their plant counterparts evolved independently from common ancestors with tBRCT domains. Collectively, our study reveals missing components and provides mechanistic and evolutionary insights into plant DDR.


Assuntos
Dano ao DNA , Proteínas Nucleares , Animais , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilação/genética , Reparo do DNA
2.
Curr Biol ; 33(20): 4367-4380.e9, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37738971

RESUMO

The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2.


Assuntos
Arabidopsis , Complexo Repressor Polycomb 2 , Animais , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Elementos de DNA Transponíveis/genética , Eucariotos/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
3.
Nat Commun ; 14(1): 3363, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291154

RESUMO

Eukaryotic organelle genomes are generally of conserved size and gene content within phylogenetic groups. However, significant variation in genome structure may occur. Here, we report that the Stylonematophyceae red algae contain multipartite circular mitochondrial genomes (i.e., minicircles) which encode one or two genes bounded by a specific cassette and a conserved constant region. These minicircles are visualized using fluorescence microscope and scanning electron microscope, proving the circularity. Mitochondrial gene sets are reduced in these highly divergent mitogenomes. Newly generated chromosome-level nuclear genome assembly of Rhodosorus marinus reveals that most mitochondrial ribosomal subunit genes are transferred to the nuclear genome. Hetero-concatemers that resulted from recombination between minicircles and unique gene inventory that is responsible for mitochondrial genome stability may explain how the transition from typical mitochondrial genome to minicircles occurs. Our results offer inspiration on minicircular organelle genome formation and highlight an extreme case of mitochondrial gene inventory reduction.


Assuntos
Genoma Mitocondrial , Rodófitas , Filogenia , Genoma Mitocondrial/genética , Células Eucarióticas , Mitocôndrias/genética , Rodófitas/genética , Evolução Molecular
4.
J Phycol ; 59(3): 444-466, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792488

RESUMO

The Cyanidiophyceae, an extremophilic red algal class, is distributed worldwide in extreme environments. Species grow either in acidic hot environments or in dim light conditions (e.g., "cave Cyanidium"). The taxonomy and classification systems are currently based on morphological, eco-physiological, and molecular phylogenetic characters; however, previous phylogenetic results showed hidden diversity of the Cyanidiophyceae and suggested a revision of the classification system. To clarify phylogenetic relationships within this red algal class, we employ a phylogenomic approach based on 15 plastomes (10 new) and 15 mitogenomes (seven new). Our phylogenies show consistent relationships among four lineages (Galdieria, "cave Cyanidium", Cyanidium, and Cyanidioschyzon lineages). Each lineage is distinguished by organellar genome characteristics. The "cave Cyanidium" lineage is a distinct clade that diverged after the Galdieria clade but within a larger monophyletic clade that included the Cyanidium and Cyanidioschyzon lineages. Because the "cave Cyanidium" lineage is a mesophilic lineage that differs substantially from the other three thermoacidophilic lineages, we describe it as a new order (Cavernulicolales). Based on this evidence, we reclassified the Cyanidiophyceae into four orders: Cyanidiales, Cyanidioschyzonales, Cavernulicolales ord. nov., and Galdieriales ord. nov. The genetic distance among these four orders is comparable to, or greater than, the distances found between other red algal orders and subclasses. Three new genera (Cavernulicola, Gronococcus, Sciadococcus), five new species (Galdieria javensis, Galdieria phlegrea, Galdieria yellowstonensis, Gronococcus sybilensis, Sciadococcus taiwanensis), and a new nomenclatural combination (Cavernulicola chilensis) are proposed.


Assuntos
Extremófilos , Genomas de Plastídeos , Rodófitas , Filogenia , Rodófitas/genética
5.
Nat Commun ; 14(1): 10, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599855

RESUMO

The high temperature, acidity, and heavy metal-rich environments associated with hot springs have a major impact on biological processes in resident cells. One group of photosynthetic eukaryotes, the Cyanidiophyceae (Rhodophyta), has successfully thrived in hot springs and associated sites worldwide for more than 1 billion years. Here, we analyze chromosome-level assemblies from three representative Cyanidiophyceae species to study environmental adaptation at the genomic level. We find that subtelomeric gene duplication of functional genes and loss of canonical eukaryotic traits played a major role in environmental adaptation, in addition to horizontal gene transfer events. Shared responses to environmental stress exist in Cyanidiales and Galdieriales, however, most of the adaptive genes (e.g., for arsenic detoxification) evolved independently in these lineages. Our results underline the power of local selection to shape eukaryotic genomes that may face vastly different stresses in adjacent, extreme microhabitats.


Assuntos
Fontes Termais , Metais Pesados , Rodófitas , Rodófitas/genética , Genoma/genética , Aclimatação , Filogenia
6.
Semin Cell Dev Biol ; 134: 4-13, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35339358

RESUMO

Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.


Assuntos
Extremófilos , Rodófitas , Humanos , Eucariotos , Extremófilos/genética , Rodófitas/genética , Genoma , Solo , Filogenia
7.
BMC Cancer ; 22(1): 852, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927628

RESUMO

Tumor acidosis, a common phenomenon in solid cancers such as breast cancer, is caused by the abnormal metabolism of cancer cells. The low pH affects cells surrounding the cancer, and tumor acidosis has been shown to inhibit the activity of immune cells. Despite many previous studies, the immune surveillance mechanisms are not fully understood. We found that the expression of PD-L1 was significantly increased under conditions of extracellular acidosis in MDA-MB-231 cells. We also confirmed that the increased expression of PD-L1 mediated by extracellular acidosis was decreased when the pH was raised to the normal range. Gene set enrichment analysis (GSEA) of public breast cancer patient databases showed that PD-L1 expression was also highly correlated with IL-6/JAK/STAT3 signaling. Surprisingly, the expression of both phospho-tyrosine STAT3 and PD-L1 was significantly increased under conditions of extracellular acidosis, and inhibition of STAT3 did not increase the expression of PD-L1 even under acidic conditions in MDA-MB-231 cells. Based on these results, we suggest that the expression of PD-L1 is increased by tumor acidosis via activation of STAT3 in MDA-MB-231 cells.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Antígeno B7-H1/metabolismo , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Microambiente Tumoral
8.
Biochem Biophys Res Commun ; 613: 133-139, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35561580

RESUMO

Diabetic retinopathy (DR) is one of the vascular complications associated with diabetes mellitus. Pericyte loss is an early characteristic phenomenon in DR. However, the mechanism by which pericyte apoptosis occurs in DR is not fully understood. We have focused on the increased STAT3 activation in diabetic retinas because STAT3 activation is associated with inflammation, and persistent chronic inflammation is closely related to retinal lesions. In this study, we demonstrated that STAT3 was activated by IFN-γ and IL-6 that highly expressed in diabetic retinas. We identified TNF-α as a potent inducer of pericyte apoptosis in diabetic retinas from the gene expression analysis and found that STAT3 activation in microglia increased TNF-α expression in the diabetic retinas. We also demonstrated that increased TNF-α expression in microglia caused pericyte apoptosis through downregulating AKT/p70S6 kinase signaling. Moreover, we took advantage of mice lacking STAT3 in microglia and demonstrated that STAT3 ablation in microglia reduced the pericyte apoptosis and TNF-α expression in the diabetic retinas. These results suggest that STAT3 activation in microglia plays an important role in pericyte apoptosis in the diabetic retinas through increased TNF-α expression and provide STAT3 activation in microglia as a potential therapeutic target for preventing pericyte loss in DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Apoptose , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Inflamação/patologia , Camundongos , Microglia/metabolismo , Pericitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Retina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Oncogene ; 41(11): 1634-1646, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094008

RESUMO

Diabetes mellitus (DM) characterized by hyperglycemia is a chronic metabolic disorder that leads to many symptoms and vascular complications. Despite the close association between DM and cancer progression, the response and role of endothelial cells (ECs) under diabetic conditions in tumor metastasis remain to be elucidated. In this study, we sought to determine whether and how ECs under diabetic conditions contribute to tumor metastasis. We have taken advantage of syngeneic mouse tumor models of Lewis lung carcinoma (LLC) and melanoma (B16F10) cells and a streptozotocin (STZ)-induced hyperglycemia model. We demonstrated that hyperglycemia increased the metastasis of LLC and B16F10 cells in an experimental metastasis model with an intravenous injection of the tumor cells. We also found that hyperglycemia promoted lung metastasis of tumor cells by increasing the adhesiveness of ECs to facilitate the adhesion of tumor cells to ECs rather than affecting the metastatic behavior of tumor cells themselves. From the analysis of gene expression in primary lung ECs from STZ-treated mice, we identified that vWF promoted the adhesion of tumor cells to ECs and the transendothelial migration of tumor cells. Mechanistically, hyperglycemia-induced oxidative stress in ECs, and increased oxidative stress enhanced vWF expression in ECs through an increase in the transcription factor GATA1. These results provide evidence for the role of vWF in ECs in promoting hyperglycemia-induced tumor metastasis and potential therapeutic targets for the regulation of vWF expression in ECs and hyperglycemia-induced tumor metastasis.


Assuntos
Carcinoma Pulmonar de Lewis , Diabetes Mellitus , Hiperglicemia , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Lewis/genética , Diabetes Mellitus/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fator de Transcrição GATA1/metabolismo , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Estresse Oxidativo
10.
BMC Biol ; 20(1): 2, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996446

RESUMO

BACKGROUND: Group II introns are mobile genetic elements that can insert at specific target sequences, however, their origins are often challenging to reconstruct because of rapid sequence decay following invasion and spread into different sites. To advance understanding of group II intron spread, we studied the intron-rich mitochondrial genome (mitogenome) in the unicellular red alga, Porphyridium. RESULTS: Analysis of mitogenomes in three closely related species in this genus revealed they were 3-6-fold larger in size (56-132 kbp) than in other red algae, that have genomes of size 21-43 kbp. This discrepancy is explained by two factors, group II intron invasion and expansion of repeated sequences in large intergenic regions. Phylogenetic analysis demonstrates that many mitogenome group II intron families are specific to Porphyridium, whereas others are closely related to sequences in fungi and in the red alga-derived plastids of stramenopiles. Network analysis of intron-encoded proteins (IEPs) shows a clear link between plastid and mitochondrial IEPs in distantly related species, with both groups associated with prokaryotic sequences. CONCLUSION: Our analysis of group II introns in Porphyridium mitogenomes demonstrates the dynamic nature of group II intron evolution, strongly supports the lateral movement of group II introns among diverse eukaryotes, and reveals their ability to proliferate, once integrated in mitochondrial DNA.


Assuntos
Genoma Mitocondrial , Rodófitas , Evolução Molecular , Humanos , Íntrons/genética , Filogenia , Plastídeos/genética , Rodófitas/genética
12.
Sci Rep ; 11(1): 21894, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750459

RESUMO

Self-regulated "smart" insulin administration system that mimic pancreatic endocrine function would be highly desirable for diabetes management. Here, a glucose-responsive continuous insulin delivery system is developed, where novel polyhedral oligosilsesquioxane (POSS) modified with 3-aminophenylboronic acid (APBA) were used to encapsulate insulin (insulin entrapment efficiency: 73.2%) to prepare a fast response, high stability, good distribution, and excellent biocompatible system. Due to the strong hydrophobicity of POSS, the POSS moiety is located at the core in aqueous solution and combines with the boronic group of APBA and the diol generated in PEG-insulin to form a nanomicelle structure, that is, nanoparticles naturally. Micelles self-assembled from these molecules possess glucose-responsiveness at varying glucose concentrations. The interaction of the PBA and diol containing insulin via boronate ester bond and its interchange with glucose was investigated by FT-IR, 1H NMR and XPS. Furthermore, the successful glucose-triggered release of insulin from the POSS-APBA micelles was investigated at neutral pH. A linear graph was plotted with the measured released insulin vs glucose concentrations, with a linear correlation coefficient (R2) value close to 1. Circular dichroism (CD) spectroscopy analysis was performed to measure insulin activity by comparing secondary structures of insulin, PEG-Insulin, and POSS-APBA@insulin. When confirming intracellular apoptosis signaling, cleaved caspase 3 and caspase 9 were not increased by 640 µg/ml POSS-APBA and POSS-APBA@insulin in HeLa, HDF and HUVE cells. Application in the biomedical field for controlled delivery of insulin appear to be promising.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Insulina/análogos & derivados , Nanopartículas/administração & dosagem , Ácidos Borônicos/química , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Concentração de Íons de Hidrogênio , Insulina/administração & dosagem , Insulina/química , Micelas , Microscopia Eletrônica de Varredura , Nanopartículas/química , Nanopartículas/ultraestrutura , Compostos de Organossilício/química , Espectroscopia Fotoeletrônica , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Cell Rep ; 37(1): 109798, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34587481

RESUMO

Despite the worldwide effect of the coronavirus disease 2019 (COVID-19) pandemic, the underlying mechanisms of fatal viral pneumonia remain elusive. Here, we show that critical COVID-19 is associated with enhanced eosinophil-mediated inflammation when compared to non-critical cases. In addition, we confirm increased T helper (Th)2-biased adaptive immune responses, accompanying overt complement activation, in the critical group. Moreover, enhanced antibody responses and complement activation are associated with disease pathogenesis as evidenced by formation of immune complexes and membrane attack complexes in airways and vasculature of lung biopsies from six fatal cases, as well as by enhanced hallmark gene set signatures of Fcγ receptor (FcγR) signaling and complement activation in myeloid cells of respiratory specimens from critical COVID-19 patients. These results suggest that SARS-CoV-2 infection may drive specific innate immune responses, including eosinophil-mediated inflammation, and subsequent pulmonary pathogenesis via enhanced Th2-biased immune responses, which might be crucial drivers of critical disease in COVID-19 patients.


Assuntos
Anticorpos Antivirais/imunologia , COVID-19/imunologia , Proteínas do Sistema Complemento/imunologia , Eosinófilos/imunologia , Inflamação/imunologia , Pneumonia Viral/imunologia , SARS-CoV-2/imunologia , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Complexo Antígeno-Anticorpo/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Ativação do Complemento , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Eosinófilos/virologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/virologia , Lesão Pulmonar/imunologia , Lesão Pulmonar/patologia , Lesão Pulmonar/virologia , Masculino , Pessoa de Meia-Idade , Pneumonia Viral/metabolismo , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Células Th2/imunologia , Carga Viral , Adulto Jovem
14.
Mitochondrial DNA B Resour ; 6(7): 2009-2011, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34189267

RESUMO

We report the complete plastid genome of Cumathamnion serrulatum, also known as Delesseria serrulata. The plastid genome was 174,192 bp in size. Annotation showed there were 193 protein coding genes, three ribosomal RNAs, and 29 transfer RNAs. One intron was found, and the GC content was 27.2%. The maximum likelihood tree with the concatenated 177 plastid coding genes showed a strong monophyletic relationship to Membranoptera spp. within the Ceramiales.

15.
Mitochondrial DNA B Resour ; 6(4): 1365-1366, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33889751

RESUMO

Polyopes lancifolius is a species of Halymeniales, the fifth species-rich order within Rhodophyta. Using next-generation sequencing techniques, we recovered the complete mitochondrial genome of P. lancifolius, i.e. total 26,142 bp in length with 31% GC contents. A total of 49 functional genes were annotated, including 24 protein-coding, 23 transfer RNA, and 2 ribosomal RNA genes. The gene content and synteny have been highly congruent to those of the other halymenialean species, such as Grateloupia taiwanensis, G. filicina, and Grateloupia angusta. Interestingly, the cox1 intron and intronic Open Reading Frame (ORF) are absent in P. lancifolius, that are existed in the other three halymenialean species.

16.
J Cell Physiol ; 236(10): 7058-7070, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33754353

RESUMO

Diabetes mellitus (DM) characterized by hyperglycemia leads to a variety of complications, including cognitive impairment or memory loss. The hippocampus is a key brain area for learning and memory and is one of the regions that is most sensitive to diabetes. However, the pathogenesis of diabetic neuronal lesion is not yet completely understood. We focused on the association of microglia activation and brain lesions in diabetes. In this study, we investigated whether and how signal transducer and activator of transcription 3 (STAT3) activation in microglia affects neuronal lesions in diabetic brains. Using a streptozotocin-induced type 1 DM model, we showed enhanced hippocampal neuronal apoptosis that was associated with increased STAT3 activation. We found that hyperglycemia increased the expression of inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6, in the diabetic hippocampus. In particular, IFN-γ induced autocrine activation of microglia, and STAT3 activation is important for this process. We also demonstrated that STAT3 activation in microglia increased tumor necrosis factor-α (TNF-α) expression; subsequently, TNF-α increased neuronal apoptosis by increasing reactive oxygen species (ROS) levels in the neuronal cells. We also took advantage of mice lacking STAT3 in microglia and demonstrated that depletion of microglial STAT3 reduced neuronal apoptosis in the diabetic hippocampus. Taken together, these results suggest that STAT3 activation in microglia plays an important role in hyperglycemia-induced neuronal apoptosis in the diabetic hippocampus and provide a potential therapeutic benefit of STAT3 inhibition in microglia for preventing diabetic neuronal lesions.


Assuntos
Apoptose , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Comunicação Autócrina , Linhagem Celular Tumoral , Citocinas/genética , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Hipocampo/patologia , Humanos , Mediadores da Inflamação/metabolismo , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
17.
Physiol Plant ; 172(3): 1422-1438, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31828796

RESUMO

ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.


Assuntos
Regulação da Expressão Gênica de Plantas , Oomicetos , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Análise por Conglomerados , Interações Hospedeiro-Patógeno , Filogenia , Doenças das Plantas/genética
18.
Mol Biol Evol ; 38(2): 344-357, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32790833

RESUMO

Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 Ga and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (∼124 Ma) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mb and 32,361 predicted gene models. A total of 291 chromatophore-targeted proteins were predicted in silico, 208 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene coexpression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function ("dark" genes). We characterized diurnally rhythmic genes in this species and found that over 49% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.


Assuntos
Amoeba/genética , Cromatóforos , Genomas de Plastídeos , Genoma de Protozoário , Simbiose , Amoeba/metabolismo , Amoeba/virologia , Transcriptoma
19.
BMC Evol Biol ; 20(1): 132, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028200

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

20.
BMC Evol Biol ; 20(1): 112, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32892741

RESUMO

BACKGROUND: The Cyanidiophyceae is an early-diverged red algal class that thrives in extreme conditions around acidic hot springs. Although this lineage has been highlighted as a model for understanding the biology of extremophilic eukaryotes, little is known about the molecular evolution of their mitochondrial genomes (mitogenomes). RESULTS: To fill this knowledge gap, we sequenced five mitogenomes from representative clades of Cyanidiophyceae and identified two major groups, here referred to as Galdieria-type (G-type) and Cyanidium-type (C-type). G-type mitogenomes exhibit the following three features: (i) reduction in genome size and gene inventory, (ii) evolution of unique protein properties including charge, hydropathy, stability, amino acid composition, and protein size, and (iii) distinctive GC-content and skewness of nucleotides. Based on GC-skew-associated characteristics, we postulate that unidirectional DNA replication may have resulted in the rapid evolution of G-type mitogenomes. CONCLUSIONS: The high divergence of G-type mitogenomes was likely driven by natural selection in the multiple extreme environments that Galdieria species inhabit combined with their highly flexible heterotrophic metabolism. We speculate that the interplay between mitogenome divergence and adaptation may help explain the dominance of Galdieria species in diverse extreme habitats.


Assuntos
Evolução Molecular , Genoma Mitocondrial , Rodófitas , Ácidos , Composição de Bases , Extremófilos/genética , Fontes Termais , Filogenia , Rodófitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...