Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309786, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760898

RESUMO

A universal approach for enhancing water affinity in polymer photocatalysts by covalently attaching hydrophilic photocrosslinkers to polymer chains is presented. A series of bisdiazirine photocrosslinkers, each comprising bisdiazirine photophores linked by various aliphatic (CL-R) or ethylene glycol-based bridge chains (CL-TEG), is designed to prevent crosslinked polymer photocatalysts from degradation through a safe and efficient photocrosslinking reaction at a wavelength of 365 nm. When employing the hydrophilic CL-TEG as a photocrosslinker with polymer photocatalysts (F8BT), the hydrogen evolution reaction (HER) rate is considerably enhanced by 2.5-fold compared to that obtained using non-crosslinked F8BT photocatalysts, whereas CL-R-based photocatalysts yield HER rates comparable to those of non-crosslinked counterparts. Photophysical analyses including time-resolved photoluminescence and transient absorption measurements reveal that adding CL-TEG accelerates exciton separation, forming long-lived charge carriers. Additionally, the in-depth study using molecular dynamics simulations elucidates the dual role of CL-TEG: it enhances water penetration into the polymer matrix and stabilizes charge carriers after exciton generation against undesirable recombination. Therefore, the strategy highlights endowing a high-permittivity environment within polymer photocatalyst in a controlled manner is crucial for enhancing photocatalytic redox reactivity. Furthermore, this study shows that this hydrophilic crosslinker approach has a broad applicability in general polymer semiconductors and their nanoparticulate photocatalysts.

2.
ACS Appl Mater Interfaces ; 14(6): 8191-8198, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35129962

RESUMO

The use of a bulk heterojunction of organic semiconductors to drive photoelectrochemical water splitting is an emerging trend; however, the optimum energy levels of the donor and acceptor have not been established for photoanode operation with respect to electrolyte pH. Herein, we prepare a set of donor polymers and non-fullerene acceptors with varying energy levels to probe the effect of photogenerated electron injection into a SnO2-based substrate under sacrificial photo-oxidation conditions. Photocurrent density (for sacrificial oxidation) up to 4.1 mA cm-2 was observed at 1.23 V vs reversible hydrogen electrode in optimized photoanodes. Moreover, we establish that a lower-lying donor polymer leads to improved performance due to both improved exciton separation and better charge collection. Similarly, lower-lying acceptors also give photoanodes with higher photocurrent density but with a later photocurrent onset potential and a narrower range of pH for good operation due to the Nernstian behavior of the SnO2, which leads to a smaller driving force for electron injection at high pH.

3.
ChemSusChem ; 14(14): 3001-3009, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34075712

RESUMO

Incorporating extended pi-conjugated organic cations in layered lead halide perovskites is a recent trend promising to merge the fields of organic semiconductors and lead halide perovskites. Herein, we integrate benzodithiophene (BDT) into Ruddlesden-Popper (RP) layered and quasi-layered lead iodide thin films (with methylammonium, MA) of the form (BDT)2 MAn-1 Pbn I3n+1 . The importance of tuning the ligand chemical structure is shown as an alkyl chain length of at least six carbon atoms is required to form a photoactive RP (n=1) phase. With N=20 or 100, as prepared in the precursor solution following the formula (BDT)2 MAN-1 PbN I3N+1 , the performance and stability of devices surpassed those with phenylethylammonium (PEA). For N=100, the BDT cation gave a power conversion efficiency of up to 14.7 % vs. 13.7 % with PEA. Transient photocurrent, UV photoelectron spectroscopy, and Fourier transform infrared spectroscopy point to improved charge transport in the device active layer and additional electronic states close to the valence band, suggesting the formation of a Lewis adduct between the BDT and surface iodide vacancies.

4.
J Am Chem Soc ; 142(17): 7795-7802, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32270679

RESUMO

As organic semiconductors attract increasing attention to application in the fields of bioelectronics and artificial photosynthesis, understanding the factors that determine their robust operation in direct contact with aqueous electrolytes becomes a critical task. Herein we uncover critical factors that influence the operational stability of donor:acceptor bulk heterojunction photocathodes for solar hydrogen production and significantly advance their performance under operational conditions. First, using the direct photoelectrochemical reduction of aqueous Eu3+ and impedance spectroscopy, we determine that replacing the commonly used fullerene-based electron acceptor with a perylene diimide-based polymer drastically increases operational stability and identify that limiting the photogenerated electron accumulation at the organic/water interface to values of ca. 100 nC cm-2 is required for stable operation (>12 h). These insights are extended to solar-driven hydrogen production using MoS3, MoP, or RuO2 water reduction catalyst overlayers where it is found that the catalyst morphology strongly affects performance due to differences in charge extraction. Optimized performance of bulk heterojunction photocathodes coated with a MoS3:MoP composite gave 1 Sun photocurrent density up to 8.7 mA cm-2 at 0 V vs RHE (pH 1). However, increased stability was gained with RuO2 where initial photocurrent density (>8 mA cm-2) deceased only 15% or 33% during continuous operation for 8 or 20 h, respectively, thus demonstrating unprecedented robustness without a protection layer. This performance represents a new benchmark for organic semiconductor photocathodes for solar fuel production and advances the understanding of stability criteria for organic semiconductor/water-junction-based devices.

5.
Angew Chem Int Ed Engl ; 58(36): 12696-12704, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31328858

RESUMO

The facile synthesis, solution-processability, and outstanding optoelectronic properties of emerging colloidal lead halide perovskite quantum dots (LHP QDs) makes them ideal candidates for scalable and inexpensive optoelectronic applications, including photovoltaic (PV) devices. The first demonstration of integrating CsPbI3 QDs into a conventional organic solar cell (OSC) involves embedding the LHP QDs in a donor-acceptor (PTB7-Th:PC71 BM) bulk heterojunction. Optimizing the loading amount at 3 wt %, we demonstrate a power conversion efficiency of 10.8 %, which is a 35 % increase over control devices, and is a record amongst hybrid ternary OSCs. Detailed investigation into the mechanisms behind the performance enhancement shows that increased light absorption is not a factor, but that increased exciton separation in the acceptor phase and reduced recombination are responsible.

6.
ACS Macro Lett ; 8(2): 134-139, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619421

RESUMO

The development of facile routes to prepare fully conjugated block copolymers (BCPs) from diverse monomers is an important goal for advancing robust bulk-heterojunction (BHJ) organic photovoltaics (OPVs). Herein we introduce a synthetic strategy for step-growth BCPs employing 1,2-bis(trialkylstannyl)ethene as one monomer, which, in addition to offering improved backbone planarity, directly yields a vinylene-terminated macromonomer suitable for Heck-Mizoroki coupling. The benefits of our strategy, which facilitates the preparation of functionalized macromonomers suitable for BCP synthesis, are demonstrated with a representative BCP based on a diketopyrrolopyrrole (DPP) copolymer coded pBDTTDPP as the donor block and a perylenediimide (PDI) copolymer coded as pPDIV as the acceptor block. Feed ratio optimization affords control over the macromonomer chain-end functionalities and allows for the selective formation of a tri-BCP consisting of pPDIV-b-pBDTTDPP-b-pPDIV, which is employed in a single-component BHJ OPV. Devices achieved a power conversion efficiency of 1.51% after thermal stress at 150 °C compared to 0.02% for a control device consisting of a comparable blend of pBDTTDPP and pPDIV. The difference in performance is ascribed to the morphological stability of the BHJ when using the BCP.

7.
Nanoscale ; 9(47): 18635-18643, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29027558

RESUMO

Oxygen-containing functional groups such as epoxy, hydroxyl, carboxylic, and carboxyl groups have a great influence on the luminescence properties of graphene oxide quantum dots (GOQDs). Understanding their roles is essential for the design and optimization of GOQD performance. Herein, we investigate the effect of epoxide functional groups in GOQDs on the luminescence mechanism through passivation of the epoxide functional groups using the alkyl ligand oleylamine. Luminescence in the as-synthesized GOQDs has two separate origins: intrinsic states derived from localized sp2 carbon subdomains and extrinsic states formed by oxygen-functional groups. When the oleylamine ligand is conjugated on the GOQDs, intrinsic PL emission from the localized sp2 carbon subdomains decreases. This is discussed in detail, based on optical characterization and first-principles density functional theory calculations, which reveal that the role of the epoxide functional groups is to form localized sp2 carbon subdomains emitting intrinsic PL. To the best of our knowledge, this is the first investigation of the role of epoxide functional groups on the luminescence mechanism in GOQDs.

8.
ACS Appl Mater Interfaces ; 7(16): 8615-21, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25825823

RESUMO

The surface properties of graphene quantum dots (GQDs) control their dispersion and location within the matrices of organic molecules and polymers, thereby determining various properties of the hybrid materials. Herein, we developed a facile, one-step method for achieving systematic control of the surface properties of highly fluorescent GQDs. The surfaces of the as-synthesized hydrophilic GQDs were modified precisely depending on the number of grafted hydrophobic hexylamine. The geometry of the modified GQDs was envisioned by conducting simulations using density functional theory. In stark contrast to the pristine GQDs, the surface-modified GQDs can effectively stabilize oil-in-water Pickering emulsions and submicron-sized colloidal particles in mini-emulsion polymerization. These versatile GQD surfactants were also employed in liquid-solid systems; we demonstrated their use for tailoring the dispersion of graphite in methanol. Finally, the particles produced by the GQD surfactants were fluorescent due to luminescence of the GQDs, which offers great potential for various applications, including fluorescent sensors and imaging.


Assuntos
Grafite/química , Pontos Quânticos/química , Tensoativos/química , Aminas/química , Coloides/química , Emulsões/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polimerização , Poliestirenos/química , Espectrofotometria Infravermelho , Propriedades de Superfície
9.
ACS Appl Mater Interfaces ; 7(4): 2668-76, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25587815

RESUMO

The low mechanical durability of polymer solar cells (PSCs) has been considered as one of the critical hurdles for their commercialization. We described a facile and powerful strategy for enhancing the mechanical properties of PSCs while maintaining their high power conversion efficiency (PCE) by using monodispersed polystyrene nanoparticles (PS NPs). We prepared highly monodispersed, size-controlled PS NPs (60, 80, and 100 nm), and used them to modify the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) anode buffer layer (ABL). The PS NPs played two important roles; i.e., they served as (1) binders in the PEDOT:PSS films, and (2) interfacial modifiers between ABL and the active layer, resulting in remarkable improvement of the mechanical integrity of the PSCs. The addition of PS NPs enhanced the inherent mechanical toughness of the PEDOT:PSS ABL due to their elastic properties, allowing the modified ABL to tolerate higher mechanical deformations. In addition, the adhesion energy (Gc) between the active layer and the modified PEDOT:PSS layer was enhanced significantly, i.e., by a factor of more than 1.5. The Gc value has a strong relationship with the sizes of the PS NP, showing the greatest enhancement when the largest size PS NPs (100 nm) were used. In addition, PS NPs significantly improve the air-stability of the PSCs by suppressing moisture adsorption and corrosion of the electrodes. Thus, the modification of ABL with PS NPs effectively enhances both the mechanical and the long-term stabilities of the PSCs without sacrificing their PCE values, demonstrating their great potential as applications in flexible organic electronics.

10.
ACS Macro Lett ; 3(10): 985-990, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35610781

RESUMO

We report the use of highly luminescent graphene quantum dots (GQDs) as efficient surfactants to produce Pickering emulsions and novel polymer particles. To generate the GQD surfactants, the surface properties of 10 nm sized, non-reduced GQDs (nGQDs), which have strong hydrophilicity, were synthesized and modified in a systematic manner by the thermal reduction of oxygen-containing groups at different treatment times. In stark contrast to the behavior of the nGQDs, thermally reduced GQDs (rGQDs) can produce highly stable Pickering emulsions of oil-in-water systems. To demonstrate the versatility of the rGQD surfactants, they were applied in a mini-emulsion polymerization system that requires nanosized surfactants to synthesize submicron-sized polystyrene particles. In addition, the use of rGQD surfactants can be extended to generating block copolymer particles with controlled nanostructures. Particularly, the polymer particles were highly luminescent, a characteristic produced by the highly fluorescent GQD surfactants, which has great potential for various applications, including bioimaging, drug delivery, and optoelectronic devices. To the best of our knowledge, this is the first report in which nanosized GQDs were used as surfactants.

11.
ACS Appl Mater Interfaces ; 5(11): 4865-71, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23676780

RESUMO

A series of o-xylene and indene fullerene derivatives with varying frontier molecular orbital energy levels were utilized for assessing the impact of the number of solubilizing groups on the electrical performance of fullerene-based organic-field-effect transistors (OFETs). The charge-carrier polarity was found to be strongly dependent upon the energy levels of fullerene derivatives. The o-xylene C60 monoadduct (OXCMA) and indene C60 monoadduct (ICMA) exhibited unipolar n-channel behaviors with high electron mobilities, whereas the bis- and trisadducts of indene and o-xylene C60 derivatives showed ambipolar charge transport. The OXCMA OFETs fabricated by solution shearing and molecular n-type doping showed an electron mobility of up to 2.28 cm(2) V(-1) s(-1), which is one of the highest electron mobilities obtained from solution-processed fullerene thin-film devices. Our findings systematically demonstrate the relationship between the energy level and charge-carrier polarity and provide insight into molecular design and processing strategies toward high-performance fullerene-based OFETs.

12.
ACS Appl Mater Interfaces ; 5(3): 861-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23289501

RESUMO

Polymer solar cells (PSCs) consisting of fullerene bis-adduct and poly(3-hexylthiophene) (P3HT) blends have shown higher efficiencies than P3HT:phenyl C(61)-butyric acid methyl ester (PCBM) devices, because of the high-lying lowest unoccupied molecular orbital (LUMO) level of the fullerene bis-adducts. In contrast, the use of fullerene bis-adducts in donor-acceptor (DA) copolymer systems typically causes a decrease in the device's performance due to the decreased short-circuit current (J(SC)) and the fill factor (FF). However, the reason for such poor performance in DA copolymer:fullerene bis-adduct blends is not fully understood. In this work, bulk-heterojunction (BHJ)-type PSCs composed of three different electron donors with four different electron acceptors were chosen and compared. The three electron donors were (1) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(5-octylthieno[3,4-c]pyrrole-4,6-dione)-1,3-diyl] (PBDTTPD), (2) poly[(4,8-bis-(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), and (3) P3HT polymers. The four electron acceptors were (1) PCBM, (2) indene-C(60) monoadduct (ICMA), (3) indene-C(60) bis-adduct (ICBA), and (4) indene-C(60) tris-adduct (ICTA). To understand the difference in the performance of BHJ-type PSCs for the three different polymers in terms of the choice of fullerene acceptor, the structural, optical, and electrical properties of the blends were measured by the external quantum efficiency (EQE), photoluminescence, grazing incidence X-ray scattering, and transient absorption spectroscopy. We observed that while the molecular packing and optical properties cannot be the main reasons for the dramatic decrease in the PCE of the DA copolymers and ICBA, the value of the driving force for charge transfer (ΔG(CT)) is a key parameter for determining the change in J(SC) and device efficiency in the DA copolymer- and P3HT-based PSCs in terms of fullerene acceptor. The low EQE and J(SC) in PBDTTPD and PBDTTT-C blended with ICBA and ICTA were attributed to an insufficient ΔG(CT) due to the higher LUMO levels of the fullerene multiadducts. Quantitative information on the efficiency of the charge transfer was obtained by comparing the polaron yield, lifetime, and exciton dissociation probability in the DA copolymer:fullerene acceptor films.

13.
ACS Appl Mater Interfaces ; 4(1): 110-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22148504

RESUMO

The ability to tune the lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) levels of fullerene derivatives used as electron acceptors is crucial in controlling the optical/electrochemical properties of these materials and the open circuit voltage (V(oc)) of solar cells. Here, we report a series of indene fullerene multiadducts (ICMA, ICBA, and ICTA) in which different numbers of indene solubilizing groups are attached to the fullerene molecule. The addition of indene units to fullerene raised its LUMO and HOMO levels, resulting in higher V(oc) values in the photovoltaic device. Bulk-heterojunction (BHJ) solar cells fabricated from poly(3-hexylthiophene) (P3HT) and a series of fullerene multiadducts-ICMA, ICBA, and ICTA showed V(oc) values of 0.65, 0.83, and 0.92 V, respectively. Despite demonstrating the highest V(oc) value, the P3HT:ICTA device exhibited lower efficiency (1.56%) than the P3HT:ICBA device (5.26%) because of its lower fill factor and current. This result could be explained by the lower light absorption and electron mobility of the P3HT:ICTA device, suggesting that there is an optimal number of the solubilizing group that can be added to the fullerene molecule. The effects of the addition of solubilizing groups on the optoelectrical properties of fullerene derivatives were carefully investigated to elucidate the molecular structure-device function relationship.

14.
Chem Commun (Camb) ; 47(12): 3577-9, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21327280

RESUMO

A simple and efficient approach of controlling the side-chain density in the electron donating polymers has been demonstrated to tune their 3-D packing structure and HOMO level, which increases the hole mobility and V(oc) values, thus improving the solar cell performance.


Assuntos
Fontes de Energia Elétrica , Polímeros/química , Energia Solar , Eletroquímica , Transporte de Elétrons , Fenômenos Ópticos , Tiofenos/química
15.
J Biomed Mater Res A ; 95(2): 424-33, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20648542

RESUMO

Epigallocatechin-3-O-gallate (EGCG), the predominant catechin from tea, is known to exert a variety of cardiovascular beneficial effects by affecting the activity of receptor and signal transduction kinases. In this study, we investigated the suppressive effects of EGCG released from biodegradable poly(L-lactide-co-ε-caprolactone, PLCL) films on the proliferation, cell cycle progression and matrix metalloproteinase-2 (MMP-2) expression of vascular smooth muscle cells (VSMCs). The involvement of phosphorylated Akt (pAkt) and nuclear factor-κB (pNF-κB) as well as the internalization of EGCG into VSMCs was also examined as underlying mechanisms for EGCG-mediated VSMC inhibition. The proliferation of canine aortic SMCs (CASMCs) on EGCG-releasing PLCL (E-PLCL) was significantly inhibited. The culture of CASMCs on E-PLCL resulted in induction of cell cycle arrest at G(0)/G(1) phase and inactivation of pAkt, leading to subsequent apoptosis. Active MMP-2 expression was directly lowered by EGCG released from E-PLCL and indirectly inhibited by the EGCG-mediated suppression of pNF-κB. We also observed the incorporation of fluorescein isothiocyanate-conjugated EGCG into the cytoplasm of CASMCs and its further nuclear translocation, which could lead to the interruption of the exogenous signals directed to genes responsible for cellular responses of CASMCs. Taken together, the attenuated responses of VSMCs to E-PLCL were shown to be mediated through the suppression of pNF-κB, pAkt and each subsequent target genes or proteins by EGCG incorporated into the cells.


Assuntos
Antioxidantes/farmacologia , Catequina/análogos & derivados , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Polímeros , Stents , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Aorta/anatomia & histologia , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Catequina/química , Catequina/metabolismo , Catequina/farmacologia , Adesão Celular , Ciclo Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Cães , Masculino , Teste de Materiais , Metaloproteinase 2 da Matriz/metabolismo , Estrutura Molecular , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , NF-kappa B/metabolismo , Polímeros/química , Polímeros/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
Biochem Biophys Res Commun ; 377(4): 1118-22, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-18983978

RESUMO

(-)-Epigallocatechin-3-O-gallate (EGCG) monoesters modified with butanoyl (EGCG-C4), octanoyl (EGCG-C8), palmitoyl groups (EGCG-C16) were synthesized by a lipase-catalyzed transesterification method and their antitumor activities were investigated in vitro and in vivo. The in vitro antitumor activities of EGCG-monoester derivatives increased in an alkyl chain length-dependent manner. The cytotoxicity of EGCG, EGCG-C4, EGCG-C8 was mainly caused by H(2)O(2) which was generated with their oxidation. On the other hand, EGCG-C16 was more stable than EGCG and it did not generate H(2)O(2) in the cell culture medium. Furthermore, EGCG-C16 inhibited cell proliferation and induced apoptosis in the presence of catalase. EGCG-C16 was found to inhibit the phosphorylation of the epidermal growth factor receptor (EGFR), which is related to various types of tumor growth. EGCG-C16 suppressed tumor growth in vivo in colorectal tumor bearing mice in comparison to an untreated control, vector control (DMSO) and EGCG.


Assuntos
Antineoplásicos/farmacologia , Catequina/análogos & derivados , Ácidos Graxos/farmacologia , Acilação , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/síntese química , Ácidos Graxos/química , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biomaterials ; 29(7): 884-93, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18031806

RESUMO

Localized drug delivery from drug-eluting stents has been accepted as one of the most promising treatment methods for preventing restenosis after stenting. However, thrombosis, inflammation, and restenosis are still major problems for the utility of cardiovascular prostheses such as vascular grafts and stents. Epigallocatechin-3-O-gallate (EGCG), a major polyphenolic constituent of green tea, has been shown to have anti-thrombotic, anti-inflammatory and anti-proliferative activities. It was hypothesized that controlled release of EGCG from biodegradable poly(lactide-co-epsilon-caprolactone, PLCL) stent coatings would suppress migration and invasion of vascular smooth muscle cells (VSMCs) as well as platelet-mediated thrombosis. EGCG-releasing PLCL (E-PLCL) was prepared by blending PLCL with 5% EGCG. The surface morphology, roughness and melting temperature of PLCL were not changed despite EGCG addition. EGCG did, however, EGCG appreciably increase the hydrophilicity of PLCL. EGCG was found to be uniformly dispersed throughout E-PLCL without direct chemical interactions with PLCL. E-PLCL displayed diffusion controlled release of EGCG release for periods up to 34 days. E-PLCL significantly suppressed the migration and invasion of VSMCs as well as the adhesion and activation of platelets. E-PLCL coatings were able to smooth the surface of bare stents with neither cracks nor webbings after balloon expansion. The structural integrity of coatings was sufficient to resist delamination or destruction during 90% dilatation. These results suggest that EGCG-releasing polymers can be effectively applied for fabricating an EGCG-eluting vascular stent to prevent in-stent restenosis and thrombosis.


Assuntos
Plaquetas/efeitos dos fármacos , Catequina/análogos & derivados , Stents Farmacológicos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Poliésteres/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Plaquetas/citologia , Catequina/química , Catequina/farmacologia , Movimento Celular , Células Cultivadas , Fenômenos Químicos , Físico-Química , Masculino , Microscopia Eletrônica de Varredura , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Ativação Plaquetária , Poliésteres/metabolismo , Ratos , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J Anat ; 209(5): 671-80, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17062023

RESUMO

Recently published reports on Korea's medieval mummies have been regarded as an invaluable source for studies into the physical characteristics of medieval Koreans. However, even though the mummified tissues have been investigated histologically on various previous occasions, there are many unanswered questions relating to their tissue preservation. The aim of this study was to obtain new data on the ultramicroscopic characteristics of the mummified skin of a fifteenth-century mummy found recently in Daejeon--one of the oldest ever found in Korea. Electron microscopy revealed that much of the epidermis had decayed; what remained of the dermis was filled with collagen fibres and melanin granules or invading bacterial spores present within the mummified epidermis. Considering the histological characteristics shared by naturally formed mummies in different parts of the world, we concluded that the ultramicroscopic patterns of the Daejeon mummy were more comparable with those naturally formed mummies than with artificially formed ones. This is the first full description of the morphological characteristics of the skin collected from this recently found medieval mummy from Daejeon, South Korea.


Assuntos
Múmias/patologia , Pele/ultraestrutura , Sepultamento , Colágeno/análise , Derme/ultraestrutura , Epiderme/química , Epiderme/ultraestrutura , Humanos , Coreia (Geográfico) , Masculino , Melaninas/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pele/química , Espectrometria por Raios X
19.
Ann Anat ; 188(5): 439-45, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16999207

RESUMO

Recent reports on the medieval mummies in Korea have been an invaluable source for the studies on the physical characteristics of medieval Koreans. Though the histological observations on the medieval mummy found in Korea were actively reported by researchers, it could not be said that all the queries on the mummies had been completely answered at the present time. In this study, we tried to add the novel data on the ultramicroscopic characteristics of the hair taken from the recently discovered 15th century mummy, the oldest one ever found in Korea. Even comparing with the hair from living individual, the hair of 15th century mummy showed very intact appearances during observation with electron microscope because the scales on the surface of the mummified hair were not damaged, which were not easily maintained even in living individuals. As to the cause of the excellent preservation of 15th century mummified hair, the presence of surface coat on the hair should be considered. That is, just like the complete sealing effect of lime-soil mixture barrier around the coffin, the presence of the surface coat including calcium and sodium might inhibit the water or fungal infiltrations into the hair shaft.


Assuntos
Múmias/patologia , Cabelo/ultraestrutura , História do Século XV , Humanos , Coreia (Geográfico) , Masculino , Melaninas/análise , Microscopia Eletrônica , Múmias/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...