Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 13846-13853, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38652033

RESUMO

Lipid rafts, which are dynamic nanodomains in the plasma membrane, play a crucial role in intermembrane processes by clustering together and growing in size within the plane of the membrane while also aligning with each other across different membranes. However, the physical origin of layer by layer alignment of lipid rafts remains to be elucidated. Here, by using fluorescence imaging and synchrotron X-ray reflectivity in a phase-separated multilayer system, we find that the alignment of raft-mimicking Lo domains is regulated by the distance between bilayers. Molecular dynamics simulations reveal that the aligned state is energetically preferred when the intermembrane distance is small due to its ability to minimize the volume of surface water, which has fewer water hydrogen bonds (HBs) compared to bulk water. Our results suggest that water HB-driven alignment of lipid rafts plays a role as a precursor of intermembrane processes such as cell-cell fusion, virus entry, and signaling.


Assuntos
Ligação de Hidrogênio , Microdomínios da Membrana , Simulação de Dinâmica Molecular , Água , Água/química , Microdomínios da Membrana/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo
2.
Eur Phys J E Soft Matter ; 46(9): 73, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653246

RESUMO

Aggregated and hyperphosphorylated Tau is one of the pathological hallmarks of Alzheimer's disease. Tau is a polyampholytic and intrinsically disordered protein (IDP). In this paper, we present for the first time experimental results on the ionic strength dependence of the radius of gyration (Rg) of human Tau 4RS and 4RL isoforms. Synchrotron X-ray scattering revealed that 4RS Rg is regulated from 65.4 to 58.5 Å and 4RL Rg is regulated from 70.9 to 57.9 Å by varying ionic strength from 0.01 to 0.592 M. The Rg of 4RL Tau is larger than 4RS at lower ionic strength. This result provides an insight into the ion-responsive nature of intrinsically disordered and polyampholytic Tau, and can be implicated to the further study of Tau-Tau and Tau-tubulin intermolecular structure in ionic environments.


Assuntos
Proteínas Intrinsicamente Desordenadas , Síncrotrons , Humanos , Raios X
3.
Small ; 16(37): e2001240, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794304

RESUMO

By virtue of their native structures, tubulin dimers are protein building blocks that are naturally preprogrammed to assemble into microtubules (MTs), which are cytoskeletal polymers. Here, polycation-directed (i.e., electrostatically tunable) assembly of tubulins is demonstrated by conformational changes to the tubulin protofilament in longitudinal and lateral directions, creating tubulin double helices and various tubular architectures. Synchrotron small-angle X-ray scattering and transmission electron microscopy reveal a remarkable range of nanoscale assembly structures: single- and double-layered double-helix tubulin tubules. The phase transitions from MTs to the new assemblies are dependent on the size and concentration of polycations. Two characteristic scales that determine the number of observed phases are the size of polycation compared to the size of tubulin (≈4 nm) and to MT diameter (≈25 nm). This work suggests the feasibility of using polycations that have scissor- and glue-like properties to achieve "programmable breakdown" of protein nanotubes, tearing MTs into double-stranded tubulins and building up previously undiscovered nanostructures. Importantly, a new role of tubulins is defined as 2D shape-controllable building blocks for supramolecular architectures. These findings provide insight into the design of protein-based functional materials, for example, as metallization templates for nanoscale electronic devices, molecular screws, and drug delivery vehicles.


Assuntos
Microtúbulos , Tubulina (Proteína) , Citoesqueleto , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...