Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Rev. bras. med. esporte ; 29: e2022_0415, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1423583

RESUMO

ABSTRACT Introduction: There is a lack of electrochemical biosensors that allow finding hemoglobin (Hb), a protein found within red blood cells, available in athletes' urine samples. Objective: This work is focused on the production of dsDNA immobilized on an Au-modified glassy carbon electrode (dsDNA/Au/GCE) and its use as a sensor for the presence of urinary hemoglobin. Methods: The elements were deposited in spherical form and tested as a porosity electrode surface for DNA immobilization according to the surface scan of the functionalized dsDNA/Au/GCE using SEM analysis. DPV and amperometry were used to conduct electrochemical studies. Results: Amperometric analyses showed that Hb determination on dsDNA/Au/GCE showed better stability and sensitivity. In the existence of multiple interfering species and clinical urine samples produced, the selectivity and the actual ability of dsDNA/Au/GCE for hemoglobin determination were investigated. Conclusion: The results showed that dsDNA/Au/GCE is effective, reliable, and selective as an electrochemical sensor of Hb. Level of evidence II; Therapeutic studies - investigation of treatment outcomes.


RESUMO Introdução: Há uma carência de biossensores eletroquímicos que permitam encontrar a hemoglobina (Hb), uma proteína encontrada dentro dos glóbulos vermelhos do sangue, disponível em amostras de urina dos atletas. Objetivo: Este trabalho é focado na produção de dsDNA imobilizado em um eletrodo de carbono vítreo Au-modificado (dsDNA/Au/GCE) e seu uso como sensor para a presença de hemoglobina urinária. Métodos: Os elementos foram depositados em forma esférica e testados como superfície de eletrodo de porosidade para imobilização do DNA, de acordo com o exame de superfície do dsDNA/Au/GCE funcionalizado, utilizando análise SEM. DPV e amperometria foram usados para conduzir estudos eletroquímicos. Resultados: As análises amperométricas demonstraram que a determinação de Hb em dsDNA/Au/GCE apresentou um melhor grau de estabilidade e sensibilidade. Na existência de múltiplas espécies interferentes e amostras clínicas de urina produzidas, a seletividade e capacidade real do dsDNA/Au/GCE para a determinação da hemoglobina foram investigadas. Conclusão: Os resultados mostraram que o dsDNA/Au/GCE é efetivo, confiável e seletivo como sensor eletroquímico de Hb. Nível de evidência II; Estudos terapêuticos - investigação dos resultados do tratamento.


RESUMEN Introducción: Se carece de biosensores electroquímicos que permitan encontrar la hemoglobina (Hb), una proteína que se encuentra dentro de los glóbulos rojos, disponible en las muestras de orina de los deportistas. Objetivo: Este trabajo se centra en la producción de dsDNA inmovilizado en un electrodo de carbono vítreo modificado con Au (dsDNA/Au/GCE) y su uso como sensor de la presencia de hemoglobina urinaria. Métodos: Los elementos fueron depositados en forma esférica y probados como una superficie de electrodo porosa para la inmovilización de ADN, según el escaneo de la superficie del dsDNA/Au/GCE funcionalizado, utilizando el análisis SEM. Se utilizó la DPV y la amperometría para realizar estudios electroquímicos. Resultados: Los análisis amperométricos demostraron que la determinación de Hb en dsDNA/Au/GCE mostraba un mayor grado de estabilidad y sensibilidad. En la existencia de múltiples especies interferentes y muestras clínicas de orina producidas, se investigó la selectividad y la capacidad real del dsDNA/Au/GCE para la determinación de Hb. Conclusión: Los resultados mostraron que el dsDNA/Au/GCE es eficaz, fiable y selectivo como sensor electroquímico de Hb. Nivel de evidencia II; Estudios terapéuticos - investigación de los resultados del tratamiento.

2.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34673570

RESUMO

Ischemic retinopathies including diabetic retinopathy are major causes of blindness. Although neurons and Müller glia are recognized as important regulators of reparative and pathologic angiogenesis, the role of mononuclear phagocytes (MPs) - particularly microglia, the resident retinal immune cells - is unclear. Here, we found MP activation in human diabetic retinopathy, especially in neovessels from human neovascular membranes in proliferative retinopathy, including TNF-α expression. There was similar activation in the mouse oxygen-induced retinopathy (OIR) model of ischemia-induced neovascularization. Glucagon-like peptide-1 receptor (GLP-1R) agonists are in clinical use for glycemic control in diabetes and are also known to modulate microglia. Herein, we investigated the effect of a long-acting GLP-1R agonist, NLY01. Following intravitreal administration, NLY01 selectively localized to MPs in retina with OIR. NLY01 modulated MPs but not retinal endothelial cell viability, apoptosis, and tube formation in vitro. In OIR, NLY01 treatment inhibited MP infiltration and activation, including MP expression of cytokines in vivo. NLY01 significantly suppressed global induction of retinal inflammatory cytokines, promoted reparative angiogenesis, and suppressed pathologic retinal neovascularization. Collectively, these findings indicate the important role of mononuclear phagocytes in regulation of retinal vascularization in ischemia and suggest modulation of MPs as a potentially new treatment strategy for ischemic retinopathies.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Isquemia/patologia , Células Mieloides/metabolismo , Neovascularização Patológica/metabolismo , Doenças Retinianas/genética , Neovascularização Retiniana/metabolismo , Animais , Humanos , Camundongos , Doenças Retinianas/patologia
3.
Adv Ther (Weinh) ; 4(2)2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34527806

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis. Corticosteroids including triamcinolone acetonide (TA), known for their antiangiogenic effects, are used in treating retinal diseases, but their use is significantly limited by side effects including cataracts and glaucoma. Generation-4 hydroxyl polyamidoamine dendrimer nanoparticles are utilized to deliver TA to activated microglia in the ischemic retina in a mouse model of oxygen-induced retinopathy (OIR). Following intravitreal injection, dendrimer-conjugated TA (D-TA) exhibits selective localization and sustained retention in activated microglia in disease-associated areas of the retina. D-TA, but not free TA, suppresses inflammatory cytokine production, microglial activation, and preretinal neovascularization in OIR. In addition, D-TA, but not free TA, ameliorates OIR-induced neuroretinal and visual dysfunction. These results indicate that activated microglia are a promising therapeutic target for retinal angiogenesis and neuroprotection in ischemic retinal diseases. Furthermore, dendrimer-based targeted therapy and specifically D-TA constitute a promising treatment approach for DR, offering increased and sustained drug efficacy with reduced side effects.

4.
JCI Insight ; 5(6)2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213707

RESUMO

Ischemic retinopathies are major causes of blindness worldwide. Local hypoxia created by loss of vascular supply leads to tissue injury and aberrant neovascularization in the retina. There is a great need for therapies that enhance revascularization of hypoxic neuroretinal tissue. To test the therapeutic feasibility of human-induced pluripotent stem cell-derived endothelial cells (hiPSC-ECs) for the treatment of ischemic retinopathies, we compared the angiogenic potential of hiPSC-ECs with mature human retinal endothelial cells (HRECs) in response to hypoxia. hiPSC-ECs formed more robust and complex vascular networks in collagen gels, whereas HRECs displayed minimal sprouting. The cells were further tested in the mouse oxygen-induced retinopathy (OIR) model. Retinas with hiPSC-EC injection showed colocalization with host vessels, whereas HRECs lacked such responses. hiPSC-ECs markedly reduced vaso-obliteration and pathological neovascularization. This beneficial effect of hiPSC-ECs was explained by the stromal cell-derived factor-1a (SDF1a)/CXCR4 axis; hiPSC-ECs exhibited much higher cell-surface expression of CXCR4 than HRECs and greater chemotaxis toward SDF1a-embedded 3D collagen hydrogel. Furthermore, treatment with neutralizing antibody to CXCR4 abolished recruitment of hiPSCs in the OIR model. These findings suggest superior angiogenic potential of hiPSC-ECs under hypoxia and underscore the importance of SDF1a/CXCR4 in the reparative function of hiPSC-ECs in ischemic diseases.


Assuntos
Quimiocina CXCL12/metabolismo , Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Doenças Retinianas/patologia , Animais , Hipóxia Celular/fisiologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Doenças Retinianas/metabolismo
5.
Free Radic Biol Med ; 146: 181-188, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669760

RESUMO

The Nrf2-Keap1 pathway regulates transcription of a wide array of antioxidant and cytoprotective genes and offers critical protection against oxidative stress. This pathway has demonstrated benefit for a variety of retinal conditions. Retinal ischemia plays a pivotal role in many vision threatening diseases. Retinal vascular endothelial cells are an important participant in ischemic injury. In this setting, Nrf2 provides a protective pathway via amelioration of oxidative stress and inflammation. In this study, we investigated a potent small molecule inhibitor of the Nrf2-Keap1 protein-protein interaction (PPI), CPUY192018, for its therapeutic potential in retinal cells and retinal ischemia-reperfusion injury. In human retinal endothelial cells (HREC), treatment with CPUY192018 increased Nrf2 protein levels and nuclear translocation, stimulated Nrf2-ARE-induced transcriptional capacity, and induced Nrf2 target gene expression. Furthermore, CPUY192018 protected HREC against oxidative stress and inflammatory activation. CPUY192018 also activated Nrf2 and suppressed inflammatory response in macrophages. In the retinal ischemia-reperfusion (I/R) model, administration of CPUY192018 induced Nrf2 target gene activation in the retina. Both systemic and topical treatment with CPUY192018 rescued visual function after ischemia-reperfusion injury. Taken together, these findings indicate that small molecule Keap1-Nrf2 PPI inhibitors can activate the Nrf2 pathway in the retina and provide protection against retinal ischemic and inflammatory injury, suggesting Keap1-Nrf2 PPI inhibition in the treatment of retinal conditions.


Assuntos
Fator 2 Relacionado a NF-E2 , Traumatismo por Reperfusão , Células Endoteliais/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Retina/metabolismo
6.
Adv Drug Deliv Rev ; 146: 267-288, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30075168

RESUMO

Chronic diabetic wounds represent a huge socioeconomic burden for both affected individuals and the entire healthcare system. Although the number of available treatment options as well as our understanding of wound healing mechanisms associated with diabetes has vastly improved over the past decades, there still remains a great need for additional therapeutic options. Tissue engineering and regenerative medicine approaches provide great advantages over conventional treatment options, which are mainly aimed at wound closure rather than addressing the underlying pathophysiology of diabetic wounds. Recent advances in biomaterials and stem cell research presented in this review provide novel ways to tackle different molecular and cellular culprits responsible for chronic and nonhealing wounds by delivering therapeutic agents in direct or indirect ways. Careful integration of different approaches presented in the current article could lead to the development of new therapeutic platforms that can address multiple pathophysiologic abnormalities and facilitate wound healing in patients with diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/terapia , Hipoglicemiantes/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos , Humanos , Engenharia Tecidual
7.
ACS Macro Lett ; 8(12): 1670-1675, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619393

RESUMO

High-refractive-index sulfur-rich polymers with significantly improved thermal properties are prepared using divinylbenzene (DVB) as a comonomer in a modified, low-temperature inverse vulcanization with elemental sulfur. Differential scanning calorimetry and Fourier transform infrared studies reveal that under the modified inverse vulcanization conditions, homopolymerized DVB segments form, leading to high glass-transition temperatures (Tg > 100 °C) and thermal stability previously unattainable from the inverse vulcanization of bifunctional olefin comonomers. On the basis of the modified procedures, a three-step molding process of the inverse vulcanization product of DVB, poly(S-r-DVB), involving (1) prepolymer formation, (2) hot-press compression molding of the soft prepolymer, and (3) thermal annealing of the molded product is demonstrated. The molded high-sulfur-content poly(S-r-DVB) exhibits a high refractive index (n > 1.85), along with high midwave infrared transmittance. Combined with a high Tg, these properties render poly(S-r-DVB) with properties highly desirable in applications involving infrared optics.

8.
J Vis Exp ; (113)2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27501124

RESUMO

Retinal ischemia-reperfusion (I/R) is a pathophysiological process contributing to cellular damage in multiple ocular conditions, including glaucoma, diabetic retinopathy, and retinal vascular occlusions. Rodent models of I/R injury are providing significant insights into mechanisms and treatment strategies for human I/R injury, especially with regard to neurodegenerative damage in the retinal neurovascular unit. Presented here is a protocol for inducing retinal I/R injury in mice through elevation of intraocular pressure (IOP). In this protocol, the ocular anterior chamber is cannulated with a needle, through which flows the drip of an elevated saline reservoir. Using this drip to raise IOP above systolic arterial blood pressure, a practitioner temporarily halts inner retinal blood flow (ischemia). When circulation is reinstated (reperfusion) by removal of the cannula, severe cellular damage ensues, resulting ultimately in retinal neurodegeneration. Recent studies demonstrate inflammation, vascular permeability, and capillary degeneration as additional elements of this model. Compared to alternative retinal I/R methodologies, such as retinal arterial ligation, retinal I/R injury by elevated IOP offers advantages in its anatomical specificity, experimental tractability, and technical accessibility, presenting itself as a valuable tool for examining neuronal pathogenesis and therapy in the retinal neurovascular unit.


Assuntos
Pressão Intraocular , Traumatismo por Reperfusão , Retina/lesões , Animais , Modelos Animais de Doenças , Camundongos , Tonometria Ocular
9.
Wound Repair Regen ; 24(5): 829-840, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27292154

RESUMO

Reduced mobilization of endothelial progenitor cells (EPCs) from the bone marrow (BM) and impaired EPC recruitment into the wound represent a fundamental deficiency in the chronic ulcers. However, mechanistic understanding of the role of BM-derived EPCs in cutaneous wound neovascularization and healing remains incomplete, which impedes development of EPC-based wound healing therapies. The objective of this study was to determine the role of EPCs in wound neovascularization and healing both under normal conditions and using single deficiency (EPC) or double-deficiency (EPC + diabetes) models of wound healing. MMP9 knockout (MMP9 KO) mouse model was utilized, where impaired EPC mobilization can be rescued by stem cell factor (SCF). The hypotheses were: (1) MMP9 KO mice exhibit impaired wound neovascularization and healing, which are further exacerbated with diabetes; (2) these impairments can be rescued by SCF administration. Full-thickness excisional wounds with silicone splints to minimize contraction were created on MMP9 KO mice with/without streptozotocin-induced diabetes in the presence or absence of tail-vein injected SCF. Wound morphology, vascularization, inflammation, and EPC mobilization and recruitment were quantified at day 7 postwounding. Results demonstrate no difference in wound closure and granulation tissue area between any groups. MMP9 deficiency significantly impairs wound neovascularization, increases inflammation, decreases collagen deposition, and decreases peripheral blood EPC (pb-EPC) counts when compared with wild-type (WT). Diabetes further increases inflammation, but does not cause further impairment in vascularization, as compared with MMP9 KO group. SCF improves neovascularization and increases EPCs to WT levels (both nondiabetic and diabetic MMP9 KO groups), while exacerbating inflammation in all groups. SCF rescues EPC-deficiency and impaired wound neovascularization in both diabetic and nondiabetic MMP9 KO mice. Overall, the results demonstrate that BM-derived EPCs play a significant role during wound neovascularization and that the SCF-based therapy with controlled inflammation could be a viable approach to enhance healing in chronic diabetic wounds.

10.
Biomaterials ; 102: 107-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27328431

RESUMO

Stem cell-based therapy is emerging as a promising approach for chronic diabetic wounds, but strategies for optimizing both cellular differentiation and delivery remain as major obstacles. Here, we study bioengineered vascularized constructs as a therapeutic modality for diabetic wound healing. We developed a wound model in immunodeficient rodent and treated it with engineered vascularized constructs from endothelial progenitors or early vascular cells-derived from human induced pluripotent stem cells (hiPSCs) reprogrammed either from healthy donor or type-1 diabetic patient. We found that all vascularized constructs expedited wound closure and reperfusion, with endothelial progenitor constructs having the earliest maximum closure rate followed closely by healthy and diabetic hiPSC-derivative constructs. This was accompanied by rapid granulation layer formation and regression in all vascularized construct groups. Macrophage infiltration into the hydrogel matrix occurred during early stages of healing, seeming to facilitate rapid neovascularization of the wound that could then better persist in the vascularized constructs. Blood perfusion of the human vasculature could be detected after three days, indicating rapid integration with the host vasculature. Overall, we propose a potential therapeutic strategy using allograft or autologous vascularized constructs to treat type-1 diabetic wounds. This approach highlights the unprecedented prospects of designing patient-specific stem cell therapy.


Assuntos
Complicações do Diabetes/terapia , Diabetes Mellitus Experimental/complicações , Células Endoteliais/transplante , Células-Tronco Pluripotentes Induzidas/transplante , Neovascularização Fisiológica , Alicerces Teciduais/química , Cicatrização , Animais , Linhagem Celular , Diabetes Mellitus Tipo 1/complicações , Modelos Animais de Doenças , Células Endoteliais/citologia , Feminino , Humanos , Ácido Hialurônico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos Nus , Transplante de Células-Tronco/métodos
11.
J Neuroinflammation ; 12: 239, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26689280

RESUMO

BACKGROUND: Retinal ischemia results in neuronal degeneration and contributes to the pathogenesis of multiple blinding diseases. Recently, the fumaric acid ester dimethyl fumarate (DMF) has been FDA-approved for the treatment of multiple sclerosis, based on its neuroprotective and anti-inflammatory effects. Its potential role as a neuroprotective agent for retinal diseases has received little attention. In addition, DMF's mode of action remains elusive, although studies have suggested nuclear factor erythroid 2-related factor 2 (Nrf2) activation as an important mechanism. Here we investigated the neuroprotective role of monomethyl fumarate (MMF), the biologically active metabolite of DMF, in retinal ischemia-reperfusion (I/R) injury, and examined the role of Nrf2 in mediating MMF action. METHODS: Wild-type C57BL/6J and Nrf2 knockout (KO) mice were subjected to 90 min of retinal ischemia followed by reperfusion. Mice received daily intraperitoneal injection of MMF. Inflammatory gene expression was measured using quantitative reverse transcription PCR (qRT-PCR) at 48 h after I/R injury. Seven days after I/R, qRT-PCR for Nrf2 target gene expression, immunostaining for Müller cell gliosis and cell loss in the ganglion cell layer (GCL), and electroretinography for retinal function were performed. RESULTS: The results of this study confirmed that MMF reduces retinal neurodegeneration in an Nrf2-dependent manner. MMF treatment significantly increased the expression of Nrf2-regulated antioxidative genes, suppressed inflammatory gene expression, reduced Müller cell gliosis, decreased neuronal cell loss in the GCL, and improved retinal function measured by electroretinogram (ERG) after retinal I/R injury in wild-type mice. Importantly, these MMF-mediated beneficial effects were not observed in Nrf2 KO mice. CONCLUSIONS: These results indicate that fumaric acid esters (FAEs) exert a neuronal protective function in the retinal I/R model and further validate Nrf2 modulation as a major mode of action of FAEs. This suggests that DMF and FAEs could be a potential therapeutic agent for activation of the Nrf2 pathway in retinal and possibly systemic diseases.


Assuntos
Fumaratos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/patologia , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/metabolismo , Degeneração Retiniana/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Neurochem ; 133(2): 233-41, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683606

RESUMO

Retinal ischemia plays a critical role in multiple vision-threatening diseases and leads to death of retinal neurons, particularly ganglion cells. Oxidative stress plays an important role in this ganglion cell loss. Nrf2 (NF-E2-related factor 2) is a major regulator of the antioxidant response, and its role in the retina is increasingly appreciated. We investigated the potential retinal neuroprotective function of Nrf2 after ischemia-reperfusion (I/R) injury. In an experimental model of retinal I/R, Nrf2 knockout mice exhibited much greater loss of neuronal cells in the ganglion cell layer than wild-type mice. Primary retinal ganglion cells isolated from Nrf2 knockout mice exhibited decreased cell viability compared to wild-type retinal ganglion cells, demonstrating the cell-intrinsic protective role of Nrf2. The retinal neuronal cell line 661W exhibited reduced cell viability following siRNA-mediated knockdown of Nrf2 under conditions of oxidative stress, and this was associated with exacerbation of increase in reactive oxygen species. The synthetic triterpenoid CDDO-Im (2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide), a potent Nrf2 activator, inhibited reactive oxygen species increase in cultured 661W under oxidative stress conditions and increased neuronal cell survival after I/R injury in wild-type, but not Nrf2 knockout mice. Our findings indicate that Nrf2 exhibits a retinal neuroprotective function in I/R and suggest that pharmacologic activation of Nrf2 could be a therapeutic strategy. Oxidative stress is thought to be an important mediator of retinal ganglion cell death in ischemia-reperfusion injury. We found that the transcription factor NF-E2-related factor 2 (Nrf2), a major regulator of oxidative stress, is an important endogenous neuroprotective molecule in retinal ganglion cells in ischemia-reperfusion, exerting a cell-autonomous protective effect.  The triterpenoid 2-Cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) reduces neurodegeneration following ischemia-reperfusion in an Nrf2-dependent fashion. This suggests that Nrf2-activating drugs including triterpenoids could be a therapeutic strategy for retinal neuroprotection.


Assuntos
Isquemia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Imidazóis/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , RNA Interferente Pequeno/farmacologia , Retina/citologia , Células Ganglionares da Retina/metabolismo , terc-Butil Hidroperóxido/farmacologia
13.
Adv Wound Care (New Rochelle) ; 3(11): 717-728, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25371854

RESUMO

Objective: The effect of chronic hyperglycemic exposure on endothelial cell (EC) phenotype, impaired wound neovascularization, and healing is not completely understood. The hypotheses are: 1) chronic exposure to diabetic conditions in vivo impairs the angiogenic potential of ECs and 2) this deficiency can be improved by an extracellular microenvironment of angiogenic peptide nanofibers. Approach: Angiogenic potential of microvascular ECs isolated from diabetic (db/db) and wild type (wt) mice was assessed by quantifying migration, proliferation, apoptosis, capillary morphogenesis, and vascular endothelial growth factor (VEGF) expression for cell cultures on Matrigel (Millipore, Billerica, MA) or nanofibers under normoglycemic conditions. The in vivo effects of nanofiber treatment on wound vascularization were determined using two mouse models of diabetic wound healing. Results: Diabetic ECs showed significant impairments in migration, VEGF expression, and capillary morphogenesis. The nanofiber microenvironment restored capillary morphogenesis and VEGF expression and significantly increased proliferation and decreased cell apoptosis of diabetic cells versus wt controls. In diabetic wounds, nanofibers significantly enhanced EC infiltration, neovascularization, and VEGF protein levels, as compared to saline treatment; this effect was observed even in MMP9 knockout mice with endothelial progenitor cell (EPC) deficiency. Innovation: The results suggest a novel approach for correcting diabetes-induced endothelial deficiencies via cell interactions with a nanofiber-based provisional matrix in the absence of external angiogenic stimuli. Conclusion: Impaired endothelial angiogenic potential can be restored by angiogenic cell stimulation in the nanofiber microenvironment; this suggests that nanofiber technology for diabetic wound healing and treatment of other diabetes-induced vascular deficiencies is promising.

14.
Diabetologia ; 57(1): 204-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24186494

RESUMO

AIMS/HYPOTHESIS: Although much is known about the pathophysiological processes contributing to diabetic retinopathy (DR), the role of protective pathways has received less attention. The transcription factor nuclear factor erythroid-2-related factor 2 (also known as NFE2L2 or NRF2) is an important regulator of oxidative stress and also has anti-inflammatory effects. The objective of this study was to explore the potential role of NRF2 as a protective mechanism in DR. METHODS: Retinal expression of NRF2 was investigated in human donor and mouse eyes by immunohistochemistry. The effect of NRF2 modulation on oxidative stress was studied in the human Müller cell line MIO-M1. Non-diabetic and streptozotocin-induced diabetic wild-type and Nrf2 knockout mice were evaluated for multiple DR endpoints. RESULTS: NRF2 was expressed prominently in Müller glial cells and astrocytes in both human and mouse retinas. In cultured MIO-M1 cells, NRF2 inhibition significantly decreased antioxidant gene expression and exacerbated tert-butyl hydroperoxide- and hydrogen peroxide-induced oxidative stress. NRF2 activation strongly increased NRF2 target gene expression and suppressed oxidant-induced reactive oxygen species. Diabetic mice exhibited retinal NRF2 activation, indicated by nuclear translocation. Superoxide levels were significantly increased by diabetes in Nrf2 knockout mice as compared with wild-type mice. Diabetic Nrf2 knockout mice exhibited a reduction in retinal glutathione and an increase in TNF-α protein compared with wild-type mice. Nrf2 knockout mice exhibited early onset of blood-retina barrier dysfunction and exacerbation of neuronal dysfunction in diabetes. CONCLUSIONS/INTERPRETATION: These results indicate that NRF2 is an important protective factor regulating the progression of DR and suggest enhancement of the NRF2 pathway as a potential therapeutic strategy.


Assuntos
Retinopatia Diabética/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Retinopatia Diabética/genética , Humanos , Masculino , Camundongos , Camundongos Mutantes , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia
15.
Acc Chem Res ; 46(12): 2763-72, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23537285

RESUMO

Controlled translocation of molecules and ions across lipid membranes is the basis of numerous biological functions. Because synthetic systems can help researchers understand the more complex biological ones, many chemists have developed synthetic mimics of biological transporters. Both systems need to deal with similar fundamental challenges. In addition to providing mechanistic insights into transport mechanisms, synthetic transporters are useful in a number of applications including separation, sensing, drug delivery, and catalysis. In this Account, we present several classes of membrane transporters constructed in our laboratory from a facially amphiphilic building block, cholic acid. Our "molecular baskets" can selectively shuttle glucose across lipid membranes without transporting smaller sodium ions. We have also built oligocholate foldamers that transiently fold into helices with internal hydrophilic binding pockets to transport polar guests. Lastly, we describe amphiphilic macrocycles, which form transmembrane nanopores in lipid bilayers through the strong associative interactions of encapsulated water molecules. In addition to presenting the different transport properties of these oligocholate transporters, we illustrate how fundamental studies of molecular behavior in solution facilitate the creation of new and useful membrane transporters, despite the large difference between the two environments. We highlight the strong conformational effect of transporters. Because the conformation of a molecule often alters its size and shape, and the distribution of functional groups, conformational control can be used rationally to tune the property of a transporter. Finally, we emphasize that, whenever water is the solvent, its unique properties--small size, strong solvation for ionic functionalities, and an extraordinary cohesive energy density (i.e., total intermolecular interactions per unit volume)--tend to become critical factors to be considered. Purposeful exploitation of these solvent properties may be essential to the success of the supramolecular process involved--this is also the reason for the "learning through water play" in the title of this Account.

16.
J R Soc Interface ; 10(78): 20120548, 2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22993248

RESUMO

Low-amplitude electric field (EF) is an important component of wound-healing response and can promote vascular tissue repair; however, the mechanisms of action on endothelium remain unclear. We hypothesized that physiological amplitude EF regulates angiogenic response of microvascular endothelial cells via activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. A custom set-up allowed non-thermal application of EF of high (7.5 GHz) and low (60 Hz) frequency. Cell responses following up to 24 h of EF exposure, including proliferation and apoptosis, capillary morphogenesis, vascular endothelial growth factor (VEGF) expression and MAPK pathways activation were quantified. A db/db mouse model of diabetic wound healing was used for in vivo validation. High-frequency EF enhanced capillary morphogenesis, VEGF release, MEK-cRaf complex formation, MEK and ERK phosphorylation, whereas no MAPK/JNK and MAPK/p38 pathways activation was observed. The endothelial response to EF did not require VEGF binding to VEGFR2 receptor. EF-induced MEK phosphorylation was reversed in the presence of MEK and Ca(2+) inhibitors, reduced by endothelial nitric oxide synthase inhibition, and did not depend on PI3K pathway activation. The results provide evidence for a novel intracellular mechanism for EF regulation of endothelial angiogenic response via frequency-sensitive MAPK/ERK pathway activation, with important implications for EF-based therapies for vascular tissue regeneration.


Assuntos
Capilares/crescimento & desenvolvimento , Campos Eletromagnéticos , Sistema de Sinalização das MAP Quinases , Morfogênese , Neovascularização Fisiológica , Animais , Apoptose , Cálcio/metabolismo , Capilares/citologia , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/biossíntese
17.
PLoS One ; 7(5): e36840, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590623

RESUMO

Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca(2+)](i)) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca(2+)](i) homeostasis due to altered sarcoplasmic reticulum Ca(2+) ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca(2+) regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca(2+)](i) homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca(2+)](i) transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca(2+) ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca(2+)](i) sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Miocárdio/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Células Endoteliais/patologia , Feminino , Miocárdio/patologia , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia
18.
Acta Biomater ; 8(1): 154-64, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21925628

RESUMO

RAD16-II peptide nanofibers are promising for vascular tissue engineering and were shown to enhance angiogenesis in vitro and in vivo, although the mechanism remains unknown. We hypothesized that the pro-angiogenic effect of RAD16-II results from low-affinity integrin-dependent interactions of microvascular endothelial cells (MVECs) with RAD motifs. Mouse MVECs were cultured on RAD16-II with or without integrin and MAPK/ERK pathway inhibitors, and angiogenic responses were quantified. The results were validated in vivo using a mouse diabetic wound healing model with impaired neovascularization. RAD16-II stimulated spontaneous capillary morphogenesis, and increased ß(3) integrin phosphorylation and VEGF expression in MVECs. These responses were abrogated in the presence of ß(3) and MAPK/ERK pathway inhibitors or on the control peptide without RAD motifs. Wide-spectrum integrin inhibitor echistatin completely abolished RAD16-II-mediated capillary morphogenesis in vitro and neovascularization and VEGF expression in the wound in vivo. The addition of the RGD motif to RAD16-II did not change nanofiber architecture or mechanical properties, but resulted in significant decrease in capillary morphogenesis. Overall, these results suggest that low-affinity non-specific interactions between cells and RAD motifs can trigger angiogenic responses via phosphorylation of ß(3) integrin and MAPK/ERK pathway, indicating that low-affinity sequences can be used to functionalize biocompatible materials for the regulation of cell migration and angiogenesis, thus expanding the current pool of available motifs that can be used for such functionalization. Incorporation of RAD or similar motifs into protein engineered or hybrid peptide scaffolds may represent a novel strategy for vascular tissue engineering and will further enhance design opportunities for new scaffold materials.


Assuntos
Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Animais , Capilares/fisiologia , Capilares/ultraestrutura , Células Cultivadas , Complicações do Diabetes/patologia , Células Endoteliais/citologia , Endotélio Vascular/citologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Integrina beta3/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neovascularização Fisiológica/fisiologia , Oligopeptídeos/química , Oligopeptídeos/genética , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/fisiologia
19.
Chem Commun (Camb) ; 47(31): 8970-2, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21698316

RESUMO

With introverted polar groups and hydrophobic exteriors, cholate-derived amphiphilic molecular baskets were efficient transporters of glucose across lipid membranes.


Assuntos
Colatos/química , Glucose/metabolismo , Bicamadas Lipídicas/metabolismo , Benzeno/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo
20.
J Hazard Mater ; 190(1-3): 537-43, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21501925

RESUMO

It is difficult to efficiently remove gaseous styrene using a TiO(2) film-coated photoreactor under UV light. Therefore, we used a hybrid system consisting of a carbon-doped TiO(2) (C-TiO(2)) film and a media-packed biofilter in order to enhance the removal efficiency (RE) of gaseous styrene compared to that of a pure (undoped) TiO(2) photoreactor. The C-TiO(2) was synthesized by a sol-gel combustion method, and its absorption spectrum was stronger that of pure (undoped) TiO(2) in the UV-vis range. The resultant RE of the C-TiO(2) film was 113-200% higher than that of the pure TiO(2) film. The initial RE of the photoreactor for input styrene concentrations of 630 mg m(-3), 420 mg m(-3), and 105 mg m(-3) was 20.6%, 29.8%, and 40.0%, respectively. When the biofilter was added, the RE increased to 93.3%, 97.9%, and 99.0%, respectively. Thus, application of the hybrid system consisting of both a photoreactor coated with a C-TiO(2) film and a biofilter is advantageous in terms of the removal efficiency of gaseous styrene.


Assuntos
Filtração/métodos , Estireno/isolamento & purificação , Titânio/química , Carbono , Cerâmica , Filtração/instrumentação , Gases , Luz , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...