Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338926

RESUMO

Gold nanoshells have been actively applied in industries beyond the research stage because of their unique optical properties. Although numerous methods have been reported for gold nanoshell synthesis, the labor-intensive and time-consuming production process is an issue that must be overcome to meet industrial demands. To resolve this, we report a high-throughput synthesis method for nanogap-rich gold nanoshells based on a core silica support (denoted as SiO2@Au NS), affording a 50-fold increase in scale by combining it with a dual-channel infusion pump system. By continuously dropping the reactant solution through the pump, nanoshells with closely packed Au nanoparticles were prepared without interparticle aggregation. The thickness of the gold nanoshells was precisely controlled at 2.3-17.2 nm by regulating the volume of the reactant solution added dropwise. Depending on the shell thickness, the plasmonic characteristics of SiO2@Au NS prepared by the proposed method could be tuned. Moreover, SiO2@Au NS exhibited surface-enhanced Raman scattering activity comparable to that of gold nanoshells prepared by a previously reported low-throughput method at the same reactant ratio. The results indicate that the proposed high-throughput synthesis method involving the use of a dual-channel infusion system will contribute to improving the productivity of SiO2@Au NS with tunable plasmonic characteristics.


Assuntos
Nanopartículas Metálicas , Nanoconchas , Ouro , Dióxido de Silício
2.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334538

RESUMO

Recently, silica nanoparticles (NPs) have attracted considerable attention as biocompatible and stable templates for embedding noble metals. Noble-metal-embedded silica NPs utilize the exceptional optical properties of novel metals while overcoming the limitations of individual novel metal NPs. In addition, the structure of metal-embedded silica NPs decorated with small metal NPs around the silica core results in strong signal enhancement in localized surface plasmon resonance and surface-enhanced Raman scattering. This review summarizes recent studies on metal-embedded silica NPs, focusing on their unique designs and applications. The characteristics of the metal-embedded silica NPs depend on the type and structure of the embedded metals. Based on this progress, metal-embedded silica NPs are currently utilized in various spectroscopic applications, serving as nanozymes, detection and imaging probes, drug carriers, photothermal inducers, and bioactivation molecule screening identifiers. Owing to their versatile roles, metal-embedded silica NPs are expected to be applied in various fields, such as biology and medicine, in the future.

3.
Cell Death Dis ; 14(12): 788, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040710

RESUMO

Mitochondrial dysfunction is important in various chronic degenerative disorders, and aberrant immune responses elicited by cytoplasmic mitochondrial DNA (mtDNA) may be related. Here, we developed mtDNA-targeted MTERF1-FokI and TFAM-FokI endonuclease systems to induce mitochondrial DNA double-strand breaks (mtDSBs). In these cells, the mtDNA copy number was significantly reduced upon mtDSB induction. Interestingly, in cGAS knockout cells, synthesis of interferon ß1 and interferon-stimulated gene was increased upon mtDSB induction. We found that mtDSBs activated DNA-PKcs and HSPA8 in a VDAC1-dependent manner. Importantly, the mitochondrial E3 ligase MARCH5 bound active DNA-PKcs in cells with mtDSBs and reduced the type І interferon response through the degradation of DNA-PKcs. Likewise, mitochondrial damage caused by LPS treatment in RAW264.7 macrophage cells increased phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA in a DNA-PKcs-dependent manner. Accordingly, in March5 knockout macrophages, phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA were prolonged after LPS stimulation. Together, cytoplasmic mtDNA elicits a cellular immune response through DNA-PKcs, and mitochondrial MARCH5 may be a safeguard to prevent persistent inflammatory reactions.


Assuntos
Lipopolissacarídeos , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Interferons/metabolismo , RNA Mensageiro/metabolismo
4.
Sci Rep ; 13(1): 18884, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919369

RESUMO

Exposure to particulate matter (PM) causes mitochondrial dysfunction and lung inflammation. The cyclooxygenase-2 (COX-2) pathway is important for inflammation and mitochondrial function. However, the mechanisms by which glucocorticoid receptors (GRs) suppress COX-2 expression during PM exposure have not been elucidated yet. Hence, we examined the mechanisms underlying the dexamethasone-mediated suppression of the PM-induced COX-2/prostaglandin E2 (PGE2) pathway in A549 cells. The PM-induced increase in COX-2 protein, mRNA, and promoter activity was suppressed by glucocorticoids; this effect of glucocorticoids was antagonized by the GR antagonist RU486. COX-2 induction was correlated with the ability of PM to increase reactive oxygen species (ROS) levels. Consistent with this, antioxidant treatment significantly abolished COX-2 induction, suggesting that ROS is involved in PM-mediated COX-2 induction. We also observed a low mitochondrial membrane potential in PM-treated A549 cells, which was reversed by dexamethasone. Moreover, glucocorticoids significantly enhanced Bcl-2/GR complex formation in PM-treated A549 cells. Glucocorticoids regulate the PM-exposed induction of COX-2 expression and mitochondrial dysfunction and increase the interaction between GR and Bcl-2. These findings suggest that the COX-2/PGE2 pathway and the interaction between GR and Bcl-2 are potential key therapeutic targets for the suppression of inflammation under PM exposure.


Assuntos
Dexametasona , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dexametasona/farmacologia , Células A549 , Material Particulado/toxicidade , Dinoprostona/metabolismo , Espécies Reativas de Oxigênio , Inflamação
5.
EMBO J ; 42(19): e113481, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37575012

RESUMO

The NLRP3 inflammasome plays a key role in responding to pathogens, and endogenous damage and mitochondria are intensively involved in inflammasome activation. The NLRP3 inflammasome forms multiprotein complexes and its sequential assembly is important for its activation. Here, we show that NLRP3 is ubiquitinated by the mitochondria-associated E3 ligase, MARCH5. Myeloid cell-specific March5 conditional knockout (March5 cKO) mice failed to secrete IL-1ß and IL-18 and exhibited an attenuated mortality rate upon LPS or Pseudomonas aeruginosa challenge. Macrophages derived from March5 cKO mice also did not produce IL-1ß and IL-18 after microbial infection. Mechanistically, MARCH5 interacts with the NACHT domain of NLRP3 and promotes K27-linked polyubiquitination on K324 and K430 residues of NLRP3. Ubiquitination-defective NLRP3 mutants on K324 and K430 residues are not able to bind to NEK7, nor form NLRP3 oligomers leading to abortive ASC speck formation and diminished IL-1ß production. Thus, MARCH5-dependent NLRP3 ubiquitination on the mitochondria is required for NLRP3-NEK7 complex formation and NLRP3 oligomerization. We propose that the E3 ligase MARCH5 is a regulator of NLRP3 inflammasome activation on the mitochondria.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Caspase 1/metabolismo
6.
Exp Mol Med ; 54(10): 1705-1712, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36229590

RESUMO

In eukaryotic cells, DNA damage can occur at any time and at any chromatin locus, including loci at which active transcription is taking place. DNA double-strand breaks affect chromatin integrity and elicit a DNA damage response to facilitate repair of the DNA lesion. Actively transcribed genes near DNA lesions are transiently suppressed by crosstalk between DNA damage response factors and polycomb repressive complexes. Epigenetic modulation of the chromatin environment also contributes to efficient DNA damage response signaling and transcriptional repression. On the other hand, RNA transcripts produced in the G1 phase, as well as the active chromatin context of the lesion, appear to drive homologous recombination repair. Here, we discuss how the ISWI family of chromatin remodeling factors coordinates the DNA damage response and transcriptional repression, especially in transcriptionally active regions, highlighting the direct modulation of the epigenetic environment.


Assuntos
Cromatina , Quebras de DNA de Cadeia Dupla , Cromatina/genética , Reparo do DNA , Dano ao DNA , DNA , Montagem e Desmontagem da Cromatina
7.
Nucleic Acids Res ; 50(16): 9247-9259, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35979947

RESUMO

Cells are constantly challenged by genotoxic stresses that can lead to genome instability. The integrity of the nuclear genome is preserved by the DNA damage response (DDR) and repair. Additionally, these stresses can induce mitochondria to transiently hyperfuse; however, it remains unclear whether canonical DDR is linked to these mitochondrial morphological changes. Here, we report that the abolition of mitochondrial fusion causes a substantial defect in the ATM-mediated DDR signaling. This deficiency is overcome by the restoration of mitochondria fusion. In cells with fragmented mitochondria, genotoxic stress-induced activation of JNK and its translocation to DNA lesion are lost. Importantly, the mitochondrial fusion machinery of MFN1/MFN2 associates with Sab (SH3BP5) and JNK, and these interactions are indispensable for the Sab-mediated activation of JNK and the ATM-mediated DDR signaling. Accordingly, the formation of BRCA1 and 53BP1 foci, as well as homology and end-joining repair are impaired in cells with fragmented mitochondria. Together, these data show that mitochondrial fusion-dependent JNK signaling is essential for the DDR, providing vital insight into the integration of nuclear and cytoplasmic stress signals.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Reparo do DNA/genética , Instabilidade Genômica , Mitocôndrias/genética , Transdução de Sinais/genética
8.
Nucleic Acids Res ; 49(21): 12268-12283, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34850117

RESUMO

DNA lesions impact on local transcription and the damage-induced transcriptional repression facilitates efficient DNA repair. However, how chromatin dynamics cooperates with these two events remained largely unknown. We here show that histone H2A acetylation at K118 is enriched in transcriptionally active regions. Under DNA damage, the RSF1 chromatin remodeling factor recruits HDAC1 to DSB sites. The RSF1-HDAC1 complex induces the deacetylation of H2A(X)-K118 and its deacetylation is indispensable for the ubiquitination of histone H2A at K119. Accordingly, the acetylation mimetic H2A-K118Q suppressed the H2A-K119ub level, perturbing the transcriptional repression at DNA lesions. Intriguingly, deacetylation of H2AX at K118 also licenses the propagation of γH2AX and recruitment of MDC1. Consequently, the H2AX-K118Q limits DNA repair. Together, the RSF1-HDAC1 complex controls the traffic of the DNA damage response and transcription simultaneously in transcriptionally active chromatins. The interplay between chromatin remodelers and histone modifiers highlights the importance of chromatin versatility in the maintenance of genome integrity.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Epigênese Genética , Regulação da Expressão Gênica , Proteínas Nucleares/genética , Transativadores/genética , Acetilação , Animais , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Camundongos , Microscopia Confocal , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Ligação Proteica , Interferência de RNA , Transativadores/metabolismo , Ubiquitinação
9.
Nucleic Acids Res ; 49(19): 11083-11102, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34614178

RESUMO

Mutual crosstalk among poly(ADP-ribose) (PAR), activated PAR polymerase 1 (PARP1) metabolites, and DNA repair machinery has emerged as a key regulatory mechanism of the DNA damage response (DDR). However, there is no conclusive evidence of how PAR precisely controls DDR. Herein, six deubiquitinating enzymes (DUBs) associated with PAR-coupled DDR were identified, and the role of USP39, an inactive DUB involved in spliceosome assembly, was characterized. USP39 rapidly localizes to DNA lesions in a PAR-dependent manner, where it regulates non-homologous end-joining (NHEJ) via a tripartite RG motif located in the N-terminus comprising 46 amino acids (N46). Furthermore, USP39 acts as a molecular trigger for liquid demixing in a PAR-coupled N46-dependent manner, thereby directly interacting with the XRCC4/LIG4 complex during NHEJ. In parallel, the USP39-associated spliceosome complex controls homologous recombination repair in a PAR-independent manner. These findings provide mechanistic insights into how PAR chains precisely control DNA repair processes in the DDR.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a DNA/genética , DNA/genética , Poli(ADP-Ribose) Polimerases/genética , Proteases Específicas de Ubiquitina/genética , Motivos de Aminoácidos , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo de DNA por Recombinação , Transdução de Sinais , Spliceossomos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Proteases Específicas de Ubiquitina/metabolismo
10.
Nat Commun ; 12(1): 5931, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635673

RESUMO

The chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.


Assuntos
Aurora Quinase B/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Mitose , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Transativadores/genética , Ácido Aspártico/metabolismo , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Nucleares/deficiência , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina/metabolismo , Transativadores/deficiência , Quinase 1 Polo-Like
11.
Phys Act Nutr ; 25(4): 54-58, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35152624

RESUMO

PURPOSE: Deleted in breast cancer 1 (DBC1) ablation causes obesity, and stearoyl-CoA desaturase 1 (SCD1) induces the biosynthesis of monounsaturated fatty acids. This study examined whether voluntary wheel running (VWR) alters SCD-1 and DBC1 protein levels in the liver of leptin-deficient ob/ob mice. METHODS: Twenty-five Ob/Ob mice were divided into two groups (ob/ob-Sed and ob/ob-Ex). The expression of DBC1 and SCD1 in the mouse liver was determined using western blotting. RESULTS: After 10 weeks, VWR significantly reduced body weight without affecting the fatty acid synthase and CD36 protein levels. The average daily running distance was 4.0±1.0 km/day. This improvement was associated with changes in the hepatic SCD1 and DBC1 levels. Hepatic SCD-1 protein levels increased significantly, and DBC1 protein levels decreased in ob/ob-Sed animals. On the other hand, VWR inhibited the obesity-induced increase in SCD1 expression and impaired the obesity-induced decrease in DBC1 expression in the liver of leptin-deficient ob/ob mice. CONCLUSION: This is the first study showing that VWR has strong effects on hepatic SCD1 and DBC1 in ob/ob mice, and provides key insights into the effects of exercise on obesity.

12.
Cell Signal ; 67: 109520, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31881323

RESUMO

The mitochondrial antiviral signaling (MAVS) protein on the mitochondrial outer membrane acts as a central signaling molecule in the RIG-I-like receptor (RLR) signaling pathway by linking upstream viral RNA recognition to downstream signal activation. We previously reported that mitochondrial E3 ubiquitin ligase, MARCH5, degrades the MAVS protein aggregate and prevents persistent downstream signaling. Since the activated RIG-I oligomer interacts and nucleates the MAVS aggregate, MARCH5 might also target this oligomer. Here, we report that MARCH5 targets and degrades RIG-I, but not its inactive phosphomimetic form (RIG-IS8E). The MARCH5-mediated reduction of RIG-I is restored in the presence of MG132, a proteasome inhibitor. Upon poly(I:C) stimulation, RIG-I forms an oligomer and co-expression of MARCH5 reduces the expression of this oligomer. The RING domain of MARCH5 is necessary for binding to the CARD domain of RIG-I. In an in vivo ubiquitination assay, MARCH5 transfers the Lys 48-linked polyubiquitin to Lys 193 and 203 residues of RIG-I. Thus, dual targeting of active RIG-I and MAVS protein oligomers by MARCH5 is an efficient way to switch-off RLR signaling. We propose that modulation of MARCH5 activity might be beneficial for the treatment of chronic immune diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína DEAD-box 58/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Receptores Imunológicos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Proteína DEAD-box 58/química , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos , Ligação Proteica , Domínios Proteicos , Proteólise , Células RAW 264.7 , Receptores Imunológicos/química , Ubiquitinação
13.
Cell Death Dis ; 10(12): 938, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819032

RESUMO

Infection of hepatitis B virus (HBV) increase the incidence of chronic liver disease and hepatocellular carcinoma (HCC). The hepatitis B viral x (HBx) protein encoded by the HBV genome contributes to the pathogenesis of HCC and thus, negative regulation of HBx is beneficial for the alleviation of the disease pathogenesis. MARCH5 is a mitochondrial E3 ubiquitin ligase and here, we show that high MARCH5 expression levels are correlated with improved survival in HCC patients. MARCH5 interacts with HBx protein mainly accumulated in mitochondria and targets it for degradation. The N-terminal RING domain of MARCH5 was required for the interaction with HBx, and MARCH5H43W lacking E3 ligase activity failed to reduce HBx protein levels. High expression of HBx results in the formation of protein aggregates in semi-denaturing detergent agarose gels and MARCH5 mediates the elimination of protein aggregates through the proteasome pathway. HBx-induced ROS production, mitophagy, and cyclooxygenase-2 gene expression were suppressed in the presence of high MARCH5 expression. These results suggest MARCH5 as a target for alleviating HBV-mediated liver disease.


Assuntos
Carcinoma Hepatocelular/metabolismo , Vírus da Hepatite B/química , Hepatite B/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/metabolismo , Agregados Proteicos , Proteólise , Transativadores/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Células HEK293 , Células HeLa , Hepatite B/complicações , Hepatite B/virologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Proteínas de Membrana/genética , Mitocôndrias/metabolismo , Agregação Patológica de Proteínas/metabolismo , Taxa de Sobrevida , Transfecção , Ubiquitina-Proteína Ligases/genética
14.
Nucleic Acids Res ; 47(12): 6299-6314, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31045206

RESUMO

Histone H2AX undergoes a phosphorylation switch from pTyr142 (H2AX-pY142) to pSer139 (γH2AX) in the DNA damage response (DDR); however, the functional role of H2AX-pY142 remains elusive. Here, we report a new layer of regulation involving transcription-coupled H2AX-pY142 in the DDR. We found that constitutive H2AX-pY142 generated by Williams-Beuren syndrome transcription factor (WSTF) interacts with RNA polymerase II (RNAPII) and is associated with RNAPII-mediated active transcription in proliferating cells. Also, removal of pre-existing H2AX-pY142 by ATM-dependent EYA1/3 phosphatases disrupts this association and requires for transcriptional silencing at transcribed active damage sites. The following recovery of H2AX-pY142 via translocation of WSTF to DNA lesions facilitates transcription-coupled homologous recombination (TC-HR) in the G1 phase, whereby RAD51 loading, but not RPA32, utilizes RNAPII-dependent active RNA transcripts as donor templates. We propose that the WSTF-H2AX-RNAPII axis regulates transcription and TC-HR repair to maintain genome integrity.


Assuntos
Histonas/metabolismo , Reparo de DNA por Recombinação , Fatores de Transcrição/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Células HEK293 , Células HeLa , Histonas/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , RNA Polimerase II/metabolismo , Tirosina/metabolismo
15.
Nat Commun ; 10(1): 1577, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30952868

RESUMO

DNA double-strand break (DSB) signaling and repair are critical for genome integrity. They rely on highly coordinated processes including posttranslational modifications of proteins. Here we show that Pellino1 (Peli1) is a DSB-responsive ubiquitin ligase required for the accumulation of DNA damage response proteins and efficient homologous recombination (HR) repair. Peli1 is activated by ATM-mediated phosphorylation. It is recruited to DSB sites in ATM- and γH2AX-dependent manners. Interaction of Peli1 with phosphorylated histone H2AX enables it to bind to and mediate the formation of K63-linked ubiquitination of NBS1, which subsequently results in feedback activation of ATM and promotes HR repair. Collectively, these results provide a DSB-responsive factor underlying the connection between ATM kinase and DSB-induced ubiquitination.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Proteínas Nucleares/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Cell Death Dis ; 9(11): 1079, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30348983

RESUMO

Remodeling and spacing factor 1 (RSF1), which is one of chromatin-remodeling factors, has been linked to the DNA damage response (DDR) and DNA repair. However, the biological consequence of RSF1 deficiency in DDR in vivo and its molecular mechanisms remain unknown. Because defective DDR is related to neuropathological phenotypes, we developed neural-specific Rsf1 knockout mice. Rsf1 deficiency did not result in any neuropathological abnormalities, but prevented neural apoptosis triggered by excessive DNA strand breaks during neurogenesis. Likewise, cell death was significantly reduced in RSF1 deficient human cell lines after DNA damage, and the global transcriptome of these cells revealed that the expressions of p53 downstream genes were significantly reduced upon DNA strand breaks. Inactivation of these genes resulted from decreased binding of p53/p300 complex and subsequent reduction of H3 acetylation at their promoters. Our data show that RSF1 is necessary for p53-dependent gene expression in response to DNA strand breaks via controlling the accessibility of p53/p300 complex to its target genes and contributes to the maintenance of cellular integrity.


Assuntos
Apoptose/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Dano ao DNA/genética , Proteínas Nucleares/genética , Transativadores/genética , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Knockout
17.
Nat Commun ; 9(1): 3848, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242288

RESUMO

Chromatin remodelers regulate the nucleosome barrier during transcription, DNA replication, and DNA repair. The chromatin remodeler RSF1 is enriched at mitotic centromeres, but the functional consequences of this enrichment are not completely understood. Shugoshin (Sgo1) protects centromeric cohesion during mitosis and requires BuB1-dependent histone H2A phosphorylation (H2A-pT120) for localization. Loss of Sgo1 at centromeres causes chromosome missegregation. Here, we show that RSF1 regulates Sgo1 localization to centromeres through coordinating a crosstalk between histone acetylation and phosphorylation. RSF1 interacts with and recruits HDAC1 to centromeres, where it counteracts TIP60-mediated acetylation of H2A at K118. This deacetylation is required for the accumulation of H2A-pT120 and Sgo1 deposition, as H2A-K118 acetylation suppresses H2A-T120 phosphorylation by Bub1. Centromeric tethering of HDAC1 prevents premature chromatid separation in RSF1 knockout cells. Our results indicate that RSF1 regulates the dynamics of H2A histone modifications at mitotic centromeres and contributes to the maintenance of chromosome stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Segregação de Cromossomos , Histona Desacetilase 1/metabolismo , Proteínas Nucleares/fisiologia , Transativadores/fisiologia , Acetilação , Instabilidade Cromossômica , Células HeLa , Código das Histonas , Humanos , Lisina Acetiltransferase 5/metabolismo , Fosforilação
18.
Mol Cells ; 41(2): 127-133, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29385673

RESUMO

Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.


Assuntos
Dano ao DNA , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Transativadores/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Western Blotting , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Células HEK293 , Humanos , Células MCF-7 , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Transativadores/genética
19.
Cell Signal ; 38: 67-75, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669827

RESUMO

Mitochondria are highly dynamic organelles that change size and morphology by fusing together or dividing through fission. In response to cellular cues, signaling cascades may post-translationally modify mitochondria-shaping proteins, which lead to a change in mitochondria morphology. Here we show that nicotinamide (NAM), an inhibitor of sirtuin deacetylases, promotes degradation of mitochondria fusion protein mitofusin 1 (MFN1), suggesting that acetylation status of MFN1 is important for its protein stability. TIP60 but not PCAF acetyltransferase caused a reduction of MFN1 level. Meanwhile, siRNA-mediated knockdown of SIRT1 deacetylase caused a significant reduction of MFN1 whereas over-expression of SIRT1 increased its level in 293T cells. In vitro acetylation experiments showed that TIP60 increased the acetylation of MFN1 that was abolished by co-existence of SIRT1. Notably, MFN1 and SIRT1 levels were accumulated, along with mitochondria elongation under hypoxic conditions. Thus, the data suggest that mitochondria elongation under hypoxic condition is regulated through SIRT1-mediated MFN1 deacetylation and accumulation. The data provide an insight in the maintenance of cellular homeostasis through mitochondria morphological change.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Sirtuína 1/metabolismo , Sequência de Aminoácidos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , GTP Fosfo-Hidrolases/química , Humanos , Lisina Acetiltransferase 5/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/química , Modelos Biológicos , Niacinamida/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitina/metabolismo
20.
Sci Rep ; 7(1): 3332, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611389

RESUMO

TNF receptor-associated death domain (TRADD) is an essential mediator of TNF receptor signaling, and serves as an adaptor to recruit other effectors. TRADD has been shown to cycle between the cytoplasm and nucleus due to its nuclear localization (NLS) and export sequences (NES). However, the underlying function of nuclear TRADD is poorly understood. Here we demonstrate that cytoplasmic TRADD translocates to DNA double-strand break sites (DSBs) during the DNA damage response (DDR). Deficiency of TRADD or its sequestration in cytosol leads to accumulation of γH2AX-positive foci in response to DNA damage, which is reversed by nuclear TRADD expression. TRADD facilitates non-homologous end-joining (NHEJ) by recruiting NHEJ repair factors 53BP1 and Ku70/80 complex, whereas TRADD is dispensable for homologous recombination (HR) repair. Finally, an impaired nuclear localization of TRADD triggers cell death through the persistent activation of JNK and accumulation of reactive oxygen species (ROS). Thus, our findings suggest that translocation of TRADD to DSBs into the nucleus contributes to cell survival in response to DNA damage through an activation of DNA damage repair.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Morte Celular , Linhagem Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Autoantígeno Ku/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteína de Domínio de Morte Associada a Receptor de TNF/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...