Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38612446

RESUMO

Camellia is an important plant genus that includes well-known species such as C. sinensis, C. oleifera, and C. japonica. The C. sinensis cultivar 'Sangmok', one of Korea's standard types of tea landraces, is a small evergreen tree or shrub. Genome annotation has shown that Korean tea plants have special and unique benefits and superior components, such as catechin. The genome of Camellia sinensis cultivar 'Sangmok' was assembled on the chromosome level, with a length of 2678.62 Mbp and GC content of 38.16%. Further, 15 chromosome-scale scaffolds comprising 82.43% of the assembly (BUSCO completeness, 94.3%) were identified. Analysis of 68,151 protein-coding genes showed an average of 5.003 exons per gene. Among 82,481 coding sequences, the majority (99.06%) were annotated by Uniprot/Swiss-Prot. Further analysis revealed that 'Sangmok' is closely related to C. sinensis, with a divergence time of 60 million years ago. A total of 3336 exclusive gene families in 'Sangmok' were revealed by gene ontology analysis to play roles in auxin transport and cellular response mechanisms. By comparing these exclusive genes with 551 similar catechin genes, 17 'Sangmok'-specific catechin genes were identified by qRT-PCR, including those involved in phytoalexin biosynthesis and related to cytochrome P450. The 'Sangmok' genome exhibited distinctive genes compared to those of related species. This comprehensive genomic investigation enhances our understanding of the genetic architecture of 'Sangmok' and its specialized functions. The findings contribute valuable insights into the evolutionary and functional aspects of this plant species.


Assuntos
Camellia sinensis , Catequina , Humanos , Metabolismo Secundário , Éxons , Cromossomos Humanos Par 15 , Camellia sinensis/genética , Chá
2.
Food Chem X ; 22: 101329, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623509

RESUMO

Yuzu (Citrus junos Sieb.) is a peel-edible fruit with a pleasant aroma, but its bitter taste can impact consumer appeal. In this study, an efficient enzymatic method reduced bitterness in green yuzu powder (GYP). Cellulase KN and naringinase from Aspergillus oryzae NYO-2 significantly decreased naringin and neohesperidin content by over 87 %, while increasing total dietary fiber and soluble dietary fiber by up to 10 % and 51 %, respectively. Insoluble dietary fiber decreased by up to 22 %. Cellulose, hemicellulose, lignin, and pectin contents in enzyme-treated YP decreased by 1.15-2.00-fold, respectively. Enzyme-treated GYP exhibited improved physicochemical properties, including enhanced solubility, oil-holding capacity, and water swelling capacities. 3T3-L1 cells treated with cellulase-treated GYP and naringinase-treated GYP showed lower lipid accumulation and higher lipolysis capability than GYP, along with decreased fatty acid synthase contents. These findings suggest that enzyme-treated GYP holds potential as a functional ingredient in the food industry.

3.
Microb Pathog ; 190: 106604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490458

RESUMO

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Assuntos
Alternaria , Bacillus subtilis , Fungicidas Industriais , Lipopeptídeos , Nitrilas , Doenças das Plantas , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Fungicidas Industriais/farmacologia , Nitrilas/farmacologia , Lipopeptídeos/farmacologia , RNA Ribossômico 16S/genética , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Peptídeos Cíclicos/farmacologia
4.
Nutrients ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068826

RESUMO

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Osteoclastos , Reabsorção Óssea/tratamento farmacológico , Doenças Ósseas Metabólicas/metabolismo , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular , Osteogênese
5.
Can J Microbiol ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917977

RESUMO

The aim of this study was to determine the plant growth-promoting effect of Bacillus subtilis PE7 on growth of melon plants. B. subtilis PE7 isolated from kimchi was identified based on colonial and microscopic morphology along with analyses of 16S rRNA and pycA gene sequences. Strain PE7 showed different levels of inhibition on phytopathogens and was able to grow at variable temperatures and pH values. Strain PE7 had the ability to produce siderophores, indole-3-acetic acid (IAA), ammonia, exopolysaccharides, and 1-aminocyclopropane-1-carboxylic acid deaminase, as well as solubilize insoluble phosphate and zinc. The IAA secretion of strain PE7 showed a concentration-dependent pattern based on the concentration of l-tryptophan supplemented in the fertilizer-based culture medium. The LC-MS analysis indicates the presence of IAA in the culture filtrate of strain PE7. Treatment of the B. subtilis PE7 culture containing different metabolites, mainly IAA, significantly promoted melon growth in terms of higher growth parameters and greater plant nutrient contents compared to treatments with the culture without IAA, fertilizer, and water. The cells of B. subtilis PE7 attached to and firmly colonized the roots of the bacterized melon plants. Based on our results, B. subtilis PE7 can be utilized as a potential microbial fertilizer to substitute chemical fertilizers in sustainable agriculture.

6.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903743

RESUMO

AIMS: Microbial biocontrol agents have become an effective option to mitigate the harmfulness of chemical pesticides in recent years. This study demonstrates the control efficacy of Bacillus velezensis CE 100 on the anthracnose causal agent, Colletotrichum gloeosporioides. METHODS AND RESULTS: In vitro antifungal assays revealed that the culture filtrate and volatile organic compounds of B. velezensis CE 100 strongly restricted the mycelial development of C. gloeosporioides. Moreover, a bioactive compound, butyl succinate, was isolated from the n-butanol crude extract of B. velezensis CE 100 (bce), and identified by liquid chromatography-electrospray ionization hybrid ion-trap and time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). Treatment with purified butyl succinate at a concentration of 300 µg mL-1 strongly controlled conidial germination of C. gloeosporioides with an inhibition rate of 98.66%, whereas butyl succinate at a concentration of 400 µg mL-1 showed weak antifungal action on the mycelial growth of C. gloeosporioides with an inhibition rate of 31.25%. Scanning electron microscopy revealed that the morphologies of butyl succinate-treated hyphae and conidia of C. gloeosporioides were severely deformed with shriveled and wrinkled surfaces. Furthermore, butyl succinate was able to control carbendazim-resistant C. gloeosporioides, demonstrating that it could be a promising agent for the suppression of other carbendazim-resistant fungal pathogens. An in vivo biocontrol assay demonstrated that the strain ce 100 broth culture and butyl succinate showed higher control efficacy on apple anthracnose than bce. CONCLUSIONS: Our findings provide insight into the antifungal potential of B. velezensis  ce 100 and its butyl succinate for efficient control of phytopathogenic fungi, such as C. gloeosporiodes, in plant disease protection. This is the first study to demonstrate the antifungal potential of bacteria-derived butyl succinate for control of C. gloeosporioides.


Assuntos
Colletotrichum , Malus , Antifúngicos/farmacologia , Antifúngicos/química , Ácido Succínico/farmacologia , Succinatos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
7.
Plants (Basel) ; 12(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571017

RESUMO

Although numerous citrus varieties have recently been developed to enhance their quality, information on their quality characteristics is limited. We assessed the quality characteristics of Yellowball, a novel citrus variety, by evaluating its appearance, storability, sensory properties, functionality, and metabolite profiles and then comparing these characteristics with those of its parent varieties, Haruka and Kiyomi. The metabolite profiles between the citrus varieties differed significantly, resulting in distinct physicochemical and functional qualities. The storability of Yellowball was significantly increased compared with that of its parent varieties owing to its strong antifungal activity and unique peel morphology, including the stoma and albedo layers. While we did not investigate the volatile compounds, overall functional activities, and detailed characteristics of each metabolite, our data provide valuable insights into the relationship between citrus metabolites, peel morphology, physicochemical properties, and storability, and demonstrate the potential of Yellowball as a promising variety in the citrus industry.

8.
Appl Microbiol Biotechnol ; 107(20): 6205-6217, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642718

RESUMO

Naringin found in citrus fruits is a flavanone glycoside with numerous biological activities. However, the bitterness, low water-solubility, and low bioavailability of naringin are the main issues limiting its use in the pharmaceutical and nutraceutical industries. Herein, a glucansucrase from isolated Leuconostoc citreum NY87 was used for trans-α-glucosylattion of naringin by using sucrose as substrate. Two naringin glucosides (O-α-D-glucosyl-(1'''' → 6″) naringin (compound 1) and 4'-O-α-D-glucosyl naringin (compound 2)) were purified and determined their structures by nuclear magnetic resonance. The optimization condition for the synthesis of compound 1 was obtained at 10 mM naringin, 200 mM sucrose, and 337.5 mU/mL at 28 °C for 24 h by response surface methodology method. Compound 1 and compound 2 showed 1896- and 3272 times higher water solubility than naringin. Furthermore, the bitterness via the human bitter taste receptor TAS2R39 displayed that compound 1 was reduced 2.9 times bitterness compared with naringin, while compound 2 did not express bitterness at 1 mM. Both compounds expressed higher neuroprotective effects than naringin on human neuroblastoma SH-SY5Y cells treated with 5 mM scopolamine based on cell viability and cortisol content. Compound 1 reduced acetylcholinesterase activity more than naringin and compound 2. These results indicate that naringin glucosides could be utilized as functional material in the nutraceutical and pharmaceutical industries. KEY POINTS: • A novel O-α-D-glucosyl-(1 → 6) naringin was synthesized using glucansucrase from L. citreum NY87. • Naringin glucosides improved water-solubility and neuroprotective effects on SH-SY5Y cells. • Naringin glucosides showed a decrease in bitterness on bitter taste receptor 39.


Assuntos
Flavanonas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Fármacos Neuroprotetores/farmacologia , Solubilidade , Acetilcolinesterase , Flavanonas/farmacologia , Sacarose/química , Glucosídeos/farmacologia , Glucosídeos/química , Água , Receptores de Superfície Celular
9.
J Adv Res ; 45: 1-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659922

RESUMO

INTRODUCTION: Sterol regulatory element binding protein (SREBP) cleavage-associating protein (SCAP) is a sterol-regulated escort protein that translocates SREBPs from the endoplasmic reticulum to the Golgi apparatus, thereby activating lipid metabolism and cholesterol synthesis. Although SCAP regulates lipid metabolism in metabolic tissues, such as the liver and muscle, the effect of macrophage-specific SCAP deficiency in adipose tissue macrophages (ATMs) of patients with metabolic diseases is not completely understood. OBJECTIVES: Here, we examined the function of SCAP in high-fat/high-sucrose diet (HFHS)-fed mice and investigated its role in the polarization of classical activated macrophages in adipose tissue. METHODS: Macrophage-specific SCAP knockout (mKO) mice were generated through crossbreeding lysozyme 2-cre mice with SCAP floxed mice which were then fed HFHS for 12 weeks. Primary macrophages were derived from bone marrow cells and analyzed further. RESULTS: We found that fat accumulation and the appearance of proinflammatory M1 macrophages were both higher in HFHS-fed SCAP mKO mice relative to floxed control mice. We traced the effect to a defect in the lipopolysaccharide-mediated increase in SREBP-1a that occurs in control but not SCAP mKO mice. Mechanistically, SREBP-1a increased expression of cholesterol 25-hydroxylase transcription, resulting in an increase in the production of 25-hydroxycholesterol (25-HC), an endogenous agonist of liver X receptor alpha (LXRα) which increased expression of cholesterol efflux to limit cholesterol accumulation and M1 polarization. In the absence of SCAP mediated activation of SREBP-1a, increased M1 macrophage polarization resulted in reduced cholesterol efflux downstream from 25-HC-dependent LXRα activation. CONCLUSION: Overall, the activation of the SCAP-SREBP-1a pathway in macrophages may provide a novel therapeutic strategy that ameliorates obesity by controlling cholesterol homeostasis in ATMs.


Assuntos
Resistência à Insulina , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Peptídeos e Proteínas de Sinalização Intracelular , Colesterol , Obesidade
10.
J Agric Food Chem ; 70(50): 15848-15858, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475725

RESUMO

Mycosporine-like amino acids (MAAs) have been used in cosmetics and pharmaceuticals. The purpose of this work was to develop yeast strains for sustainable and economical production of MAAs, especially shinorine. First, genes involved in MAA biosynthetic pathway from Actinosynnema mirum were introduced into Saccharomyces cerevisiae for heterologous shinorine production. Second, combinatorial expression of wild and mutant xylose reductase was adopted in the engineered S. cerevisiae to facilitate xylose utilization in the pentose phosphate pathway. Finally, the accumulation of sedoheptulose 7-phosphate (S7P) was attempted by deleting transaldolase-encoding TAL1 in the pentose phosphate pathway to increase carbon flux toward shinorine production. In fed-batch fermentation, the engineered strain (DXdT-M) produced 751 mg/L shinorine in 71 h. Ultimately, 54 mg/L MAAs was produced by DXdT-M from rice straw hydrolysate. The results suggest that shinorine production by S. cerevisiae might be a promising process for sustainable production and industrial applications.


Assuntos
Lignina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biomassa , Lignina/metabolismo , Xilose/metabolismo , Fermentação
11.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430475

RESUMO

Helicobacter pylori infections are a major cause of gastrointestinal disorders, including gastric ulcers, gastritis, and gastric cancer. Triple therapy, using two antibiotics and a proton pump inhibitor, is recommended for the treatment of H. pylori infections. However, antibiotic resistance in H. pylori is an emerging issue. Bamboo salt, a traditional Korean salt made by baking solar sea salt in bamboo barrels, can ameliorate the symptoms of various gastrointestinal diseases. Herein, we compared the anti-H. pylori activity of triple therapy (clarithromycin, metronidazole, and omeprazole), solar salt, and bamboo salt in vivo as a preliminary study. Four-week-old C57BL/6 male mice were inoculated for eight weeks with the H. pylori Sydney Strain 1 (SS-1) and orally administered triple therapy drugs and salts for five days. The transcript levels of the H. pylori-expressed gene CagA and inflammatory cytokines Tnfα and Il-1ß significantly decreased in the bamboo salt treated mice than those in the H. pylori-infected control group. This effect was further enhanced by using triple therapy and bamboo salt together. Solar salt caused modest inhibition of H. pylori-induced inflammation. We also demonstrated the synergistic effects of bamboo salt and triple therapy against H. pylori. Thus, bamboo salt may be a potential candidate agent against the treatment of H. pylori-associated gastritis.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Masculino , Camundongos , Animais , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/diagnóstico , Camundongos Endogâmicos C57BL , Gastrite/tratamento farmacológico
12.
J Med Food ; 25(10): 963-970, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260138

RESUMO

Glioblastoma (GBM) is one of the most dangerous brain tumors in humans. The median survival of patients with GBM is <18 months. Glioma stem-like cells (GSCs), a small subpopulation of cells with stem cell-like characteristics found within GBM, are regarded as the main cause of GBM malignancy. Therefore, targeting GSCs presents an important therapeutic strategy for reducing the aggressiveness of tumors. In this study, we examined effects of (9Z,16S)-16-O-acetyl-9,17-octadecadiene-12,14-diynoic acid (AODA), a diacetylenic carboxylic acid isolated from leaves of Dendropanax morbiferus, on viability and self-renewal activity of GSCs. AODA substantially decreased GSC growth, causing apoptotic cell death as assessed by Annexin V/PI staining and morphological alterations by optical diffraction tomography. Interestingly, treatment with AODA suppressed ''stem-like features'' in vitro by limiting dilution assays and real-time polymerase chain reaction analysis. In addition, Western blotting revealed that AODA treatment decreased expression levels of phosphorylated AKT and phosphorylated ERK in GSC11 cells. Taken together, our results indicate that AODA could be considered a new therapeutic candidate to target GSCs.


Assuntos
Glioblastoma , Glioma , Humanos , Anexina A5 , Proteínas Proto-Oncogênicas c-akt , Glioma/tratamento farmacológico , Células-Tronco , Ácidos Carboxílicos , Linhagem Celular Tumoral , Proliferação de Células
13.
Microb Pathog ; 173(Pt A): 105807, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36183955

RESUMO

Pectobacterium carotovorum is a problematic bacterial pathogen causing soft rot in different vegetable crops, resulting in yield losses during pre- and post-harvest periods. In this study, Bacillus velezensis CE 100 showed antibacterial activity against P. carotovorum. Co-inoculation experiment indicated that B. velezensis CE 100 reduced the proliferation rate of P. carotovorum at the early incubation period and that a long incubation time induced a loss of viability of the bacterial pathogen. Agar well diffusion assay revealed that the culture filtrate of strain CE 100 affected the growth of P. carotovorum in a dose-dependent pattern. In time-kill assay, inoculation of P. carotovorum with 50% culture filtrate of strain CE 100 resulted in a complete loss of survival at 4 h incubation period. An antibacterial compound isolated from chloroform extract of B. velezensis CE 100 was identified as macrolactin A based on results of 1H and 13C NMR and mass spectrometry. However, time-kill assay showed that purified macrolactin A at a concentration of 200 µgmL-1 was not highly effective to control the growth of P. carotovorum although reduction in cell number of P. carotovorum was observed. Moreover, in vivo assay revealed that B. velezensis CE 100 effectively controlled bacterial soft rot. As a consequence, it significantly improved cucumber growth. Therefore, B. velezensis CE 100 could be used as an eco-friendly bioagent for effective control of bacterial soft rot to minimize global economic losses in crop production.


Assuntos
Cucumis sativus , Pectobacterium , Pectobacterium carotovorum , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Bactérias , Antibacterianos/farmacologia
14.
IBRO Neurosci Rep ; 13: 120-126, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35910677

RESUMO

Glioblastoma multiforme (GBM) is the most severe type of human brain tumor, with a poor prognosis and a low survival rate. GBM is composed of a variety of cell types, including glioma stem-like cells (GSCs), which attribute to its therapeutic resistance (Boyd et al., 2020). Sprouty1 (SPRY1) was first identified as a receptor tyrosine kinases (RTK) signaling mediator in a mammalian cell (Christofori, 2003), however, its role in GBM is unknown. Therefore, the goal of this study was to investigate the role of SPRY1 in the stemness and aggressiveness of GSCs. The mRNA expression levels of SPRY1 were confirmed using quantitative reverse transcription PCR (RT-qPCR) in normal human astrocytes (NHA), glioma cells, and glioma stem cells. SPRY1 expression was inhibited in glioma stem cells using small interference RNA (siRNAs) to examine its role in cell proliferation and tumorsphere formation. Bioinformatics analyses were also employed to investigate the association of SPRY1 expression with patient survival, tumor grade, and subtypes publicly available datasets. We demonstrated that SPRY1 is highly expressed in glioma stem cells than in NHA, glioma cells, and differentiated glioma stem cells. siRNA-mediated downregulation of SPRY1 expression decreased the stemness and self-renewal ability in GSC11. Bioinformatics results showed that high SPRY1 expression correlates with poor overall survival in glioma patients. Our findings suggest that SPRY1 contributes to the stemness and aggressiveness of GBM.

15.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887144

RESUMO

Colletotrichum species are important fungal pathogens causing anthracnose of tropical and subtropical fruit and vegetable crops. Dual culture assay indicated that Bacillus velezensis CE 100 was a strong antagonist against C. acutatum, C. coccodes, C. dematium, and C. gloeosporioides. The volatile organic compounds produced by B. velezensis CE 100 affected mycelial growth of Colletotrichum species tested in our study and caused twisted hyphal structures of all these fungal species. Chloroform crude compounds of B. velezensis CE 100 inhibited four Colletotrichum species in a concentration-dependent manner and induced severe damage in hyphal morphology of these fungal pathogens, including swelling, bulging, and multiple branching. Moreover, the active cyclic dipeptide, cyclo-(D-phenylalanyl-D-prolyl), was isolated from chloroform crude extract and identified by nuclear magnetic resonance (NMR) and mass spectrometry. The inhibitory effect of cyclo-(D-phenylalanyl-D-prolyl) on conidial germination of C. gloeosporioides occurred in a concentration-dependent manner. The conidial germination rate was completely inhibited by a concentration of 3 mg/mL of cyclo-(D-phenylalanyl-D-prolyl). Scanning electron micrographs revealed that the exposure to cyclic dipeptide resulted in seriously deformed hyphae and conidia with shriveled surfaces in dipeptide-treated C. gloeosporioides. Therefore, active dipeptide-producing B. velezensis CE 100 is a promising biocontrol agent for Colletotrichum species causing anthracnose.


Assuntos
Colletotrichum , Antifúngicos/química , Antifúngicos/farmacologia , Bacillus , Clorofórmio , Dipeptídeos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
16.
Food Sci Biotechnol ; 31(5): 617-625, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35529689

RESUMO

Mycosporine-like amino acids (MAAs) such as shinorine and porphyra-334 from Porphyra spp. are bioactive compounds with strong photoprotective and antioxidant properties. In this study, the anti-adipogenic effect of shinorine and porphyra-334 was examined in vitro utilizing 3T3-L1 preadipocytes. Shinorine and porphyra-334 were extracted from laver (Porphyra dentata) 50% methanolic (MeOH) extract of and their structures were elucidated by MS and NMR spectroscopy. Both compounds had no cytotoxic effect in 3T3-L1 cells (< 200 µg/mL) and inhibited the accumulation of lipid droplets in 3T3-L1 mature adipocytes in a dose-dependent manner (0.1 and 1.0 µM). Interestingly, both compounds had also significantly reduced the expression of adipogenic-related genes such as peroxisome proliferator-activated receptor γ2 (PPARγ2), CCAAT/enhancer-binding protein α (C/EBPα), adiponectin, and leptin in 3T3-L1 cells. The findings suggest that shinorine and porphyra-334 have the potential to inhibit adipogenesis in 3T3-L1 preadipocytes.

17.
J Med Food ; 25(5): 503-512, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35561274

RESUMO

Salicornia herbacea L. (Chenopodiaceae), an edible salt marsh plant with anti-inflammatory effects, was examined in macrophages and trophoblasts whether it modulates NLRP3 inflammasome activity. Pretreatment and delayed treatment of S. herbacea extract (SHE) in bone marrow-derived macrophages (BMDMs) reduced the activity of NLRP3 inflammasome induced by lipopolysaccharide (LPS) and adenosine triphosphate stimulation and downregulated interleukin (IL)-1ß production. SHE also inhibited pyroptotic cell death, the adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), oligomerization, and speck by NLRP3 inflammasome activity in BMDM. Similarly, SHE decreased the mRNA expression of NLRP3, ASC, IL-1ß, and IL-6 in the LPS-stimulated human trophoblast cell line, Swan 71 cells. In addition, SHE inhibited the production of IL-6 and IL-1ß and decreased the expression of cyclooxygenase-2 and prostaglandin E2 in stimulated Swan 71 cells. Finally, 3,5-dicaffeoylquinic acid (3,5-DCQA), one of the components of S. herbacea, inhibited IL-1ß produced by NLRP3 inflammasome activity. In conclusion, SHE downregulated the activity of the NLRP3 inflammasome in macrophages and trophoblasts.


Assuntos
Chenopodiaceae , Inflamassomos , Caspase 1/metabolismo , Caspase 1/farmacologia , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Trofoblastos/metabolismo
18.
Phytomedicine ; 99: 153934, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35172258

RESUMO

BACKGROUND: Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE: In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS: Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS: The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 µM and 3.1 µM in BMDMs, 3 µM and 3.4 µM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1ß, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION: These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.

19.
Food Chem ; 366: 130623, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320438

RESUMO

Stevioside (ST) is currently considered as a highly-demanded natural and zero-caloric replacer of sucrose with several health-promoting properties. Nonetheless, its bitter aftertaste limits its use in the food industry. Herein, glucosyl steviosides were synthesized using primarily a food-grade lactic acid bacteria, Leuconostoc kimchii dextransucrase and conversion yield (%) was 40.3%. A glucose moiety was transferred stereo-selectively to ST by α-1,6-linkage and this is the first report about obtaining rebaudioside A (Reb-A) like glucosyl stevioside-2 (STG-2). Glucosyl steviosides revealed greatly improved stability up to 120 °C and remained stable over 32.1% and 58.12% in the pH (1.4) compared with 30.55% of ST. Moreover, the glucosylated steviosides improved the stability, reaching 95% after 30 days and Reb-A like compound (STG-2) especially exhibited higher stability in commercial beverages. Furthermore, the glucosyl steviosides showed over 1.92- and 2.24-fold decreases than that of enzymatically modified ST in the glucose generation rate test.


Assuntos
Diterpenos do Tipo Caurano , Stevia , Glucosiltransferases/genética , Leuconostoc/genética , Edulcorantes
20.
World J Microbiol Biotechnol ; 37(9): 159, 2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34420104

RESUMO

Botrytis cinerea, the causal agent of gray mold is one of the major devastating fungal pathogens that occurs in strawberry cultivation and leads to massive losses. Due to the rapid emergence of resistant strains in recent years, an ecofriendly disease management strategy needs to be developed to control this aggressive pathogen. Bacillus velezensis CE 100 exhibited strong antagonistic activity with 53.05% against B. cinerea by dual culture method. In the present study, 50% of culture filtrate supplemented into PDA medium absolutely inhibited mycelial growth of B. cinerea whereas the highest concentration (960 mg/L) of different crude extracts including ethyl acetate, chloroform, and n-butanol crude extracts of B. velezensis CE 100, strongly inhibited mycelial growth of B. cinerea with the highest inhibition of 79.26%, 70.21% and 69.59% respectively, resulting in severe damage to hyphal structures with bulging and swellings. Hence, the antifungal compound responsible was progressively separated from ethyl acetate crude extract using medium pressure liquid chromatography. The purified compound was identified as methyl hippurate by nuclear magnetic resonance and mass spectrometry. The inhibitory effect of methyl hippurate on both spore germination and mycelial growth of B. cinerea was revealed by its dose-dependent pattern. The spore germination rate was completely restricted at a concentration of 3 mg/mL of methyl hippurate whereas no mycelial growth was observed in agar medium supplemented with 4 mg/mL and 6 mg/mL of methyl hippurate by poisoned food method. Microscopic imaging revealed that the morphologies of spores were severely altered by long-time exposure to methyl hippurate at concentrations of 1 mg/mL, 2 mg/mL and 3 mg/mL and hyphae of B. cinerea were severely deformed by exposure to methyl hippurate at concentrations of 2 mg/mL, 4 mg/mL and 6 mg/mL. No significant inhibition on tomato seed germination was observed in treatments with methyl hippurate (2 mg/mL) for both 6 h and 12 h soaking period as compared to the controls. Based on these results, B. velezensis CE 100 could be considered a potential agent for development of environmentally friendly disease control strategies as a consequence of the synergetic interactions of diverse crude metabolites and methyl hippurate.


Assuntos
Bacillus/química , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Hipuratos/farmacologia , Bacillus/metabolismo , Botrytis/crescimento & desenvolvimento , Fungicidas Industriais/química , Fungicidas Industriais/isolamento & purificação , Fungicidas Industriais/metabolismo , Hipuratos/química , Hipuratos/isolamento & purificação , Hipuratos/metabolismo , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...