Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Neural Regen Res ; 19(11): 2543-2552, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38526290

RESUMO

JOURNAL/nrgr/04.03/01300535-202419110-00034/figure1/v/2024-03-08T184507Z/r/image-tiff Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors, leading to progressive photoreceptor loss. Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival. This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation (tcES) in mice affected by inherited retinal degeneration. Additionally, the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans. In this study, we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular, sine, and ramp waveforms. To investigate the functional effects of electrical stimulation on photoreceptors, we used human retinal explant cultures and rhodopsin knockout (Rho-/-) mice, demonstrating progressive photoreceptor degeneration with age. Human retinal explants isolated from the donors' eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro. Photoreceptor density was evaluated by rhodopsin immunolabeling. In vivo Rho-/- mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms. Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response (OMR), respectively. Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas. Oscilloscope recordings indicated effective delivery of rectangular, sine, and ramp waveforms to the retina by transcorneal electrical stimulation, of which the ramp waveform required the lowest voltage. Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes. The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro (~0.5-1.5°C). Electrical stimulation increased photoreceptor survival in human retinal explant cultures, particularly at the ramp waveform. Transcorneal electrical stimulation (rectangular + ramp) waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results. Histology and immunolabeling demonstrated increased photoreceptor survival, improved outer nuclear layer thickness, and increased bipolar cell sprouting in Rho-/- mice. These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina, improves photoreceptor survival in both human and mouse retinas, and increases visual function in Rho-/- mice. Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion.

3.
bioRxiv ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38014168

RESUMO

The limited regenerative potential of the optic nerve in adult mammals presents a major challenge for restoring vision after optic nerve trauma or disease. The mechanisms of this regenerative failure are not fully understood1,2. Here, through small-molecule and genetic screening for epigenetic modulators3, we identify DNA methyltransferase 3a (DNMT3a) as a potent inhibitor of axon regeneration in mouse and human retinal explants. Selective suppression of DNMT3a in retinal ganglion cells (RGCs) by gene targeting or delivery of shRNA leads to robust, full-length regeneration of RGC axons through the optic nerve and restoration of vision in adult mice after nerve crush injury. Genome-wide bisulfite and transcriptome profiling in combination with single nucleus RNA-sequencing of RGCs revealed selective DNA demethylation and reactivation of genetic programs supporting neuronal survival and axonal growth/regeneration by DNMT3a deficiency. This was accompanied by the suppression of gene networks associated with apoptosis and inflammation. Our results identify DNMT3a as the central orchestrator of an RGC-intrinsic mechanism that limits optic nerve regeneration. Suppressing DNMT3a expression in RGCs unlocks the epigenetic switch for optic nerve regeneration and presents a promising therapeutic avenue for effectively reversing vision loss resulted from optic nerve trauma or diseases.

4.
Cell Rep ; 42(8): 112889, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37527036

RESUMO

Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.


Assuntos
Microglia , Tauopatias , Camundongos , Animais , Humanos , Microglia/metabolismo , Doenças Neuroinflamatórias , Tauopatias/metabolismo , Inflamação/metabolismo , Encéfalo/metabolismo , Homeostase , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
J Cell Biochem ; 124(10): 1530-1545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642194

RESUMO

Electrical stimulation (ES) influences neural regeneration and functionality. We here investigate whether ES regulates DNA demethylation, a critical epigenetic event known to influence nerve regeneration. Retinal ganglion cells (RGCs) have long served as a standard model for central nervous system neurons, whose growth and disease development are reportedly affected by DNA methylation. The current study focuses on the ability of ES to rescue RGCs and preserve vision by modulating DNA demethylation. To evaluate DNA demethylation pattern during development, RGCs from mice at different stages of development, were analyzed using qPCR for ten-eleven translocation (TETs) and immunostained for 5 hydroxymethylcytosine (5hmc) and 5 methylcytosine (5mc). To understand the effect of ES on neurite outgrowth and DNA demethylation, cells were subjected to ES at 75 µAmp biphasic ramp for 20 min and cultured for 5 days. ES increased TETs mediated neurite outgrowth, DNA demethylation, TET1 and growth associated protein 43 levels significantly. Immunostaining of PC12 cells following ES for histone 3 lysine 9 trimethylation showed cells attained an antiheterochromatin configuration. Cultured mouse and human retinal explants stained with ß-III tubulin exhibited increased neurite growth following ES. Finally, mice subjected to optic nerve crush injury followed by ES exhibited improved RGCs function and phenotype as validated using electroretinogram and immunohistochemistry. Our results point to a possible therapeutic regulation of DNA demethylation by ES in neurons.

6.
Am J Pathol ; 193(11): 1662-1668, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37490970

RESUMO

As a rapidly growing field, microbiota research offers novel approaches to promoting ocular health and treating major retinal diseases, such as glaucoma. Gut microbiota changes throughout life; however, certain patterns of population changes have been increasingly associated with specific diseases. It has been well established that a disrupted microbiome contributes to central nervous system diseases, including Alzheimer disease, Parkinson disease, multiple sclerosis, and glioma, suggesting a prominent role of microbiome in neurodegenerative diseases. This review summarizes the progress in identifying significant changes in the microbial composition of patients with glaucoma by compiling studies on the association between microbiota and disease progression. Of interest is the relationship between increased Firmicutes/Bacteroidetes ratio in patients with primary open-angle glaucoma, increased taurocholic acid, decreased glutathione, and a reduction in retinal ganglion cell survival. Connecting these microbes to specific metabolites sheds light on the pathogenic mechanism and novel treatment strategies. In summary, the current review synthesizes the findings of several studies investigating the effects of shifting bacterial population in retinal diseases, particularly glaucoma, with the aim to identify the current direction of treatment and help direct future endeavors.


Assuntos
Microbioma Gastrointestinal , Glaucoma de Ângulo Aberto , Glaucoma , Doenças Retinianas , Humanos , Glaucoma de Ângulo Aberto/patologia , Microbioma Gastrointestinal/fisiologia , Glaucoma/patologia , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia
7.
Ophthalmol Sci ; 3(3): 100310, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37197701

RESUMO

Objective: Previous laboratory reports implicate heat shock protein (HSP)-specific T-cell responses in glaucoma pathogenesis; here, we aimed to provide direct clinical evidence by correlating systemic HSP-specific T-cell levels with glaucoma severity in patients with primary open-angle glaucoma (POAG). Design: Cross-sectional case-control study. Subjects: Thirty-two adult patients with POAG and 38 controls underwent blood draw and optic nerve imaging. Methods: Peripheral blood monocytes (PBMC) were stimulated in culture with HSP27, α-crystallin, a member of the small HSP family, or HSP60. Both interferon-γ (IFN-γ)+ CD4+ T helper type 1 cells (Th1) and transforming growth factor-ß1 (TGF-ß1)+ CD4+ regulatory T cells (Treg) were quantified by flow cytometry and presented as a percentage of total PBMC counts. Relevant cytokines were measured using enzyme-linked immunosorbent assays. Retinal nerve fiber layer thickness (RNFLT) was measured with OCT. Pearson's correlation (r) was used to assess correlations. Main Outcome Measures: Correlations of HSP-specific T-cell counts, and serum levels of corresponding cytokine levels with RNFLT. Results: Patients with POAG (visual field mean deviation, -4.7 ± 4.0 dB) and controls were similar in age, gender, and body mass index. Moreover, 46.9% of POAG and 60.0% of control subjects had prior cataract surgery (P = 0.48). Although no significant difference in total nonstimulated CD4+ Th1 or Treg cells was detected, patients with POAG exhibited significantly higher frequencies of Th1 cells specific for HSP27, α-crystallin, or HSP60 than controls (7.3 ± 7.9% vs. 2.6 ± 2.0%, P = 0.004; 5.8 ± 2.7% vs. 1.8 ± 1.3%, P < 0.001; 13.2 ± 13.3 vs. 4.3 ± 5.2, P = 0.01; respectively), but similar Treg specific for the same HSPs compared with controls (P ≥ 0.10 for all). Concordantly, the serum levels of IFN-γ were higher in POAG than in controls (36.2 ± 12.1 pg/ml vs. 10.0 ± 4.3 pg/ml; P < 0.001), but TGF-ß1 levels did not differ. Average RNFLT of both eyes negatively correlated with HSP27- and α-crystallin-specific Th1 cell counts, and IFN-γ levels in all subjects after adjusting for age (partial correlation coefficient r = -0.31, P = 0.03; r = -0.52, p = 0.002; r = -0.72, P < 0.001, respectively). Conclusions: Higher levels of HSP-specific Th1 cells are associated with thinner RNFLT in patients with POAG and control subjects. The significant inverse relationship between systemic HSP-specific Th1 cell count and RNFLT supports the role of these T cells in glaucomatous neurodegeneration. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

9.
Metabolites ; 13(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36837806

RESUMO

Redox homeostasis is a delicate balancing act of maintaining appropriate levels of antioxidant defense mechanisms and reactive oxidizing oxygen and nitrogen species. Any disruption of this balance leads to oxidative stress, which is a key pathogenic factor in several ocular diseases. In this review, we present the current evidence for oxidative stress and mitochondrial dysfunction in conditions affecting both the anterior segment (e.g., dry eye disease, keratoconus, cataract) and posterior segment (age-related macular degeneration, proliferative vitreoretinopathy, diabetic retinopathy, glaucoma) of the human eye. We posit that further development of therapeutic interventions to promote pro-regenerative responses and maintenance of the redox balance may delay or prevent the progression of these major ocular pathologies. Continued efforts in this field will not only yield a better understanding of the molecular mechanisms underlying the pathogenesis of ocular diseases but also enable the identification of novel druggable redox targets and antioxidant therapies.

10.
BMC Ophthalmol ; 22(1): 490, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522696

RESUMO

PURPOSE: Transcorneal electrical stimulation (TcES) is increasingly applied as a therapy for preserving and improving vision in retinal neurodegenerative and ischemic disorders. However, a common complaint about TcES is its induction of eye pain and dryness in the clinic, while the mechanisms remain unknown. METHOD: TcES or transpalpebral ES (TpES) was conducted in C57BL6j mice for 14 days. The contralateral eyes were used as non-stimulated controls. Levels of intracellular [Ca2+] ([Ca2+]i) were assessed by Fura-2AM. The conductance resistances of the eye under various ES conditions were measured in vivo by an oscilloscope. RESULTS: Although TcES did not affect tear production, it significantly induced damage to the ocular surface, as revealed by corneal fluorescein staining that was accompanied by significantly decreased mucin (MUC) 4 expression compared to the control. Similar effects of ES were detected in cultured primary corneal epithelium cells, showing decreased MUC4 and ZO-1 levels after the ES in vitro. In addition, TcES decreased secretion of MUC5AC from the conjunctiva in vivo, which was also corroborated in goblet cell cultures, where ES significantly attenuated carbachol-induced [Ca2+]i increase. In contrast to TcES, transpalpebral ES (TpES) did not induce corneal fluorescein staining while significantly increasing tear production. Importantly, the conductive resistance from orbital skin to the TpES was significantly smaller than that from the cornea to the retina in TcES. CONCLUSION: TcES, but not TpES, induces corneal epithelial damage in mice by disrupting mucin homeostasis. TpES thus may represent a safer and more effective ES approach for treating retinal neurodegeneration clinically.


Assuntos
Síndromes do Olho Seco , Células Caliciformes , Camundongos , Animais , Células Caliciformes/metabolismo , Túnica Conjuntiva/metabolismo , Estimulação Elétrica , Fluoresceína/metabolismo , Homeostase , Lágrimas/metabolismo , Síndromes do Olho Seco/terapia , Síndromes do Olho Seco/metabolismo
11.
Front Cell Dev Biol ; 10: 980775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158207

RESUMO

Non-invasive electric stimulation (ES) employing a low-intensity electric current presents a potential therapeutic modality that can be applied for treating retinal and brain neurodegenerative disorders. As neurons are known to respond directly to ES, the effects of ES on glia cells are poorly studied. A key question is if ES directly mediates microglial function or modulates their activity merely via neuron-glial signaling. Here, we demonstrated the direct effects of ES on microglia in the BV-2 cells-an immortalized murine microglial cell line. The low current ES in a biphasic ramp waveform, but not that of rectangular or sine waveforms, significantly suppressed the motility and migration of BV-2 microglia in culture without causing cytotoxicity. This was associated with diminished cytoskeleton reorganization and microvilli formation in BV-2 cultures, as demonstrated by immunostaining of cytoskeletal proteins, F-actin and ß-tubulin, and scanning electron microscopy. Moreover, ES of a ramp waveform reduced microglial phagocytosis of fluorescent zymosan particles and suppressed lipopolysaccharide (LPS)-induced pro-inflammatory cytokine expression in BV-2 cells as shown by Proteome Profiler Mouse Cytokine Array. The results of quantitative PCR and immunostaining for cyclooxygenase-2, Interleukin 6, and Tumor Necrosis Factor-α corroborated the direct suppression of LPS-induced microglial responses by a ramp ES. Transcriptome profiling further demonstrated that ramp ES effectively suppressed nearly half of the LPS-induced genes, primarily relating to cellular motility, energy metabolism, and calcium signaling. Our results reveal a direct modulatory effect of ES on previously thought electrically "non-responsive" microglia and suggest a new avenue of employing ES for anti-inflammatory therapy.

12.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012190

RESUMO

Epigenetic factors are known to influence tissue development, functionality, and their response to pathophysiology. This review will focus on different types of epigenetic regulators and their associated molecular apparatus that affect the optic nerve. A comprehensive understanding of epigenetic regulation in optic nerve development and homeostasis will help us unravel novel molecular pathways and pave the way to design blueprints for effective therapeutics to address optic nerve protection, repair, and regeneration.


Assuntos
Bainha de Mielina , Oligodendroglia , Axônios/fisiologia , Epigênese Genética , Bainha de Mielina/fisiologia , Regeneração Nervosa/genética , Oligodendroglia/fisiologia , Nervo Óptico/fisiologia
13.
Front Neurosci ; 16: 835736, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645711

RESUMO

Glaucoma is a leading cause of blindness worldwide. It is suggested that primary open angle glaucoma (POAG), the most common form of glaucoma, may be associated with significant metabolic alternations, but the systemic literature review and meta-analysis in the area have been missing. Altered metabolomic profiles in the aqueous humor and plasma may serve as possible biomarkers for early detection or treatment targets. In this article, we performed a systematic meta-analysis of the current literature surrounding the metabolomics of patients with POAG and metabolites associated with the disease. Results suggest several metabolites found to be specifically altered in patients with POAG, suggesting broad generalizability and pathways for future research.

14.
Front Immunol ; 13: 837497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265083

RESUMO

Retinal ischemia is a common cause of many retinal diseases, leading to irreversible vision impairment and blindness. Excessive neuroinflammation, including microglial activation and T-cell responses, has been identified as a critical factor associated with neurodegeneration in retinal ischemia. Baicalein is a natural flavonoid reported to have broad anti-inflammatory and neuroprotective bioactivities. Herein, the effects of baicalein on microglia activation in vitro and in vivo were investigated. We found that baicalein exhibited robust anti-inflammatory effect on cultured human and mouse microglia, as demonstrated by decreased induction of pro-inflammatory cytokines and the phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear factor kappa B (NFκB). Proteomic analysis further unraveled baicalein's effect on modulating IL-17 signaling pathways and its upstream regulator IL-1ß. Intravitreal administration of baicalein in the mouse model of retinal ischemia/reperfusion (I/R) injury attenuated microglial activation and retinal T-cell infiltration, particularly the T helper 17 cells. Additionally, baicalein was shown to exert neuroprotective effects by significantly reducing the retinal ganglion cell (RGC) loss after I/R injury, leading to an improved retinal function and spatial vision. These results suggest that baicalein, a natural flavonoid, acts as a negative regulator of activated microglia and immune responses both in vitro and in vivo, effectively alleviating neurodegeneration in retinal I/R injury. This finding indicates that baicalein could be a potential therapeutic agent against currently incurable degenerative retinal diseases.


Assuntos
Traumatismo por Reperfusão , Doenças Retinianas , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Flavanonas , Flavonoides/farmacologia , Isquemia/metabolismo , Camundongos , Microglia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Doenças Retinianas/tratamento farmacológico
15.
Ophthalmol Glaucoma ; 5(2): 128-136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34416426

RESUMO

PURPOSE: To assess the prevalence of autoimmune disease (AiD) in patients with primary open-angle glaucoma (POAG) undergoing ophthalmic surgery. DESIGN: Retrospective, cross-sectional study. PARTICIPANTS: Patients with POAG undergoing any ophthalmic surgery and control subjects undergoing cataract surgery at the Massachusetts Eye and Ear from March 2019 to April 2020. METHODS: All available medical records with patient demographics, ocular, and medical conditions were reviewed. Differences in AiD prevalence were assessed and adjusted for covariates using multiple logistic regression. Additionally, a subgroup analysis comparing the POAG patients with and without AiD was performed. MAIN OUTCOME MEASURES: To assess the prevalence of AiD based on the American Autoimmune Related Diseases Association list. RESULTS: A total of 172 patients with POAG and 179 controls were included. The overall prevalence of AiD was 17.4% in the POAG group and 10.1% in the controls (P = 0.044); 6.4% of POAG patients and 3.4% of controls had more than 1 AiD (P = 0.18). The most prevalent AiDs in POAG group were rheumatoid arthritis (4.6%) and psoriasis (4.1%), which were also the most common in controls (2.8% each). In a fully adjusted multiple logistic regression analysis accounting for steroid use, having an AiD was associated with 2.62-fold increased odds of POAG relative to controls (95% confidence interval, 1.27-5.36, P = 0.009); other risk factors for POAG derived from the analysis included age (odds ratio [OR], 1.04, P = 0.006), diabetes mellitus (OR, 2.31, P = 0.008), and non-White ethnicity (OR, 4.75, P < 0.001). In a case-only analysis involving the eye with worse glaucoma, there was no statistical difference in visual field mean deviation or retinal nerve fiber layer (RNFL) thickness in POAG patients with AiD (n = 30) and without AiD (n = 142, P > 0.13, for both). CONCLUSIONS: A higher prevalence of AiD was found in POAG patients compared with control patients undergoing ophthalmic surgery. The presence of AiD was associated with increased risk for POAG after adjusting for covariates. Additional factors may have prevented a difference in RNFL thickness in POAG patients with and without AiD. Autoimmunity should be explored further in the pathogenesis of POAG.


Assuntos
Doenças Autoimunes , Glaucoma de Ângulo Aberto , Doenças Autoimunes/complicações , Doenças Autoimunes/epidemiologia , Estudos Transversais , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/epidemiologia , Glaucoma de Ângulo Aberto/cirurgia , Humanos , Prevalência , Estudos Retrospectivos
16.
Oxid Med Cell Longev ; 2021: 8377362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306315

RESUMO

Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).


Assuntos
Encéfalo/efeitos dos fármacos , Flavanonas/farmacologia , Flavonoides/farmacologia , Retina/efeitos dos fármacos , Humanos , Estresse Oxidativo/efeitos dos fármacos
18.
Neural Regen Res ; 16(7): 1317-1322, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318411

RESUMO

Müller cells (MC) are considered dormant retinal progenitor cells in mammals. Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain. It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC. Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells. In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC. The level of ephrinAs/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC. Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2-/- A3-/- mice by 5-ethynyl-2'-deoxyuridine (EdU) incorporation. We detected a significant increase of EdU+ cells in MC derived from A2-/- A3-/- mice. Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout (Rho-/-) mice. To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2-/- A3-/- , Rho-/- and Rho-/- A2-/- A3-/- mice and the numbers of EdU+ cells distributed among different layers of the retina. EphrinAs/EphA4 expression was upregulated in the retina of Rho-/- mice compared to the wild-type mice. In addition, cultured MC derived from ephrin-A2-/- A3-/- mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice. Interestingly, we detected a significant increase of EdU+ cells in the retinas of adult ephrin-A2-/- A3-/- mice mainly in the inner nuclear layer; and these EdU+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC. In Rhodopsin knockout mice (Rho-/- A2-/- A3-/- mice), a significantly greater amount of EdU+ cells were located in the ciliary body, retina and RPE than that of Rho-/- mice. Comparing between 6 and 12 weeks old Rho-/- A2-/- A3-/- mice, we recorded more EdU+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration. Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC. Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration. All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA (approval No. S-353-0715) on October 24, 2012.

19.
Front Immunol ; 11: 585918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281816

RESUMO

Retinal ischemia/reperfusion injury (RI) is a common cause of irreversible visual impairment and blindness in elderly and critical unmet medical need. While no effective treatment is available for RI, microglial activation and local immune responses in the retina are thought to play important roles in the pathophysiology of neurodegeneration. While survival and activation of microglia depend critically on colony-stimulating factor receptor (CSF-1R) signaling, it remains unclear if targeting the retinal immune microenvironments by CSF-1RAb after RI is sufficient to rescue vision and present a potentially effective therapy. Here we used rodent models of RI and showed that retinal ischemia induced by acute elevation of intraocular pressure triggered an early activation of microglia and macrophages in the retina within 12 h. This was followed by lymphocyte infiltration and increased production of pro-inflammatory cytokines. Intravitreal injection of CSF-1R neutralizing antibody (CSF-1RAb) after RI significantly blocked microglial activation and the subsequent T cell recruitment. This also led to improved retinal ganglion cell survival and function measured by cell quantification and electroretinogram positive scotopic threshold responses, as well as increased visual acuity and contrast sensitivity as assessed by optomotor reflex-based assays, when compared to the isotype-treated control group. Moreover, the administration of CSF-1RAb efficiently attenuated inflammatory responses and activation of human microglia in culture, suggesting a therapeutic target with human relevance. These results, together with the existing clinical safety profiles, support that CSF-1RAb may present a promising therapeutic avenue for RI, a currently untreatable condition, by targeting microglia and the immune microenvironment in the retina to facilitate neural survival and visual function recovery.


Assuntos
Anticorpos Neutralizantes/farmacologia , Microglia/efeitos dos fármacos , Microglia/imunologia , Neuropatia Óptica Isquêmica/imunologia , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Animais , Microambiente Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropatia Óptica Isquêmica/patologia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Retina
20.
Am J Pathol ; 190(8): 1723-1734, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32389572

RESUMO

Retinal ischemic events, which result from occlusion of the ocular vasculature share similar causes as those for central nervous system stroke and are among the most common cause of acute and irreversible vision loss in elderly patients. Currently, there is no established treatment, and the condition often leaves patients with seriously impaired vision or blindness. The immune system, particularly T-cell-mediated responses, is thought to be intricately involved, but the exact roles remain elusive. We found that acute ischemia-reperfusion injury to the retina induced a prolonged phase of retinal ganglion cell loss that continued to progress during 8 weeks after the procedure. This phase was accompanied by microglial activation and CD4+ T-cell infiltration into the retina. Adoptive transfer of CD4+ T cells isolated from diseased mice exacerbated retinal ganglion cell loss in mice with retinal reperfusion damage. On the other hand, T-cell deficiency or administration of T-cell or interferon-γ-neutralizing antibody attenuated retinal ganglion cell degeneration and retinal function loss after injury. These findings demonstrate a crucial role for T-cell-mediated responses in the pathogenesis of neural ischemia. These findings point to novel therapeutic targets of limiting or preventing neuron and function loss for currently untreatable conditions of optic neuropathy and/or central nervous system ischemic stroke.


Assuntos
Linfócitos T CD4-Positivos/patologia , Isquemia/patologia , Retina/patologia , Degeneração Retiniana/patologia , Doenças Retinianas/patologia , Vasos Retinianos/patologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Células Ganglionares da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...