Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 619(7968): 78-86, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407684

RESUMO

The paper-folding mechanism has been widely adopted in building of reconfigurable macroscale systems because of its unique capabilities and advantages in programming variable shapes and stiffness into a structure1-5. However, it has barely been exploited in the construction of molecular-level systems owing to the lack of a suitable design principle, even though various dynamic structures based on DNA self-assembly6-9 have been developed10-23. Here we propose a method to harness the paper-folding mechanism to create reconfigurable DNA origami structures. The main idea is to build a reference, planar wireframe structure24 whose edges follow a crease pattern in paper folding so that it can be folded into various target shapes. We realized several paper-like folding and unfolding patterns using DNA strand displacement25 with high yield. Orthogonal folding, repeatable folding and unfolding, folding-based microRNA detection and fluorescence signal control were demonstrated. Stimuli-responsive folding and unfolding triggered by pH or light-source change were also possible. Moreover, by employing hierarchical assembly26 we could expand the design space and complexity of the paper-folding mechanism in a highly programmable manner. Because of its high programmability and scalability, we expect that the proposed paper-folding-based reconfiguration method will advance the development of complex molecular systems.


Assuntos
DNA , Conformação de Ácido Nucleico , DNA/química , MicroRNAs/análise , MicroRNAs/química , Fluorescência , Concentração de Íons de Hidrogênio
2.
ACS Appl Mater Interfaces ; 15(10): 13131-13143, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36791219

RESUMO

Problematic issues with electrically inert binders have been less serious in the conventional lithium-ion batteries by virtue of permeable liquid electrolytes (LEs) for ionic connection and/or carbonaceous additives for electronic connection in the electrodes. Contrary to electron-conductive binders used to maximize an active loading level, the development of ion-conductive binders has been lacking owing to the LE-filled electrode configuration. Herein, we represent a tactical strategy for improving the interfacial Li+ conduction in all-solid-state electrolyte-free graphite (EFG) electrodes where the solid electrolytes are entirely excluded, using lithium-substitution-modulated (LSM) binders. Finely tuning a lithium substitution ratio, a conductive LSM-carboxymethyl cellulose (CMC) binder is prepared from a controlled direct Na+/Li+ exchange reaction without a hazardous acid involvement. The EFG electrode employing LSM with a maximum degree of substitution of lithium (DSLi) of ∼68% in our study shows a considerably higher rate capability of 1.05 mA h cm-2 at 1 C and a capacity retention of ∼61.9% after 200 cycles at 0.5 C than those using sodium-CMC (Na-CMC) (0.78 mA h cm-2, ∼49.5%) and LSM with ∼35% lithium substitution (0.93 mA h cm-2, ∼55.4%). More importantly, the correlation between the phase transition near the bottom region of the EFG electrode and the state of charge (SOC) is systematically investigated, clarifying that the improvement of the interfacial conduction is proportional to the DSLi of the CMC binders. Theoretical calculations combined with experimental results further verify that creating the continuous interface through abundant pathways for mobile ions using the Li+-conductive binder is the enhancement mechanism of the interfacial conduction in the EFG electrode, mitigating serious charge transfer resistance.

3.
Sci Rep ; 12(1): 17745, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273076

RESUMO

Stretchable wavy circuit is an essential component in flexible devices, which have wide applications in various fields. In the industrial field, the stretching ability of the circuit is a crucial factor for flexible devices. Therefore, this study proposes laser carving method to increase both stretch ratio and device resolution of the flexible device. The results obtained from the experiment and finite element analysis verifies that laser carving on the wavy circuit increases the maximum stretch ratio of wavy circuit. The obtained analytic model confirms that laser carving generates tilted section on the wavy circuit, and reduces the bending rigidity of the curvy point of the wavy circuit. The study also verified that laser carved groove induces crack propagation into vertical to the circuit direction, so that the laser carved wavy circuit is less likely to disconnect than uncarved wavy circuit. Due to the reduced bending rigidity and crack induce, the wavy circuit stretches more than the conventional uncarved wavy circuit.

4.
Small ; 18(44): e2203772, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36169084

RESUMO

Deformations triggered by body heat are desirable in the context of shape-morphing applications because, under the majority of circumstances, the human body maintains a higher temperature than that of its surroundings. However, at present, this bioenergy-triggered action is primarily limited to soft polymeric networks. Thus, herein, the programming of body temperature-triggered deformations into rigid azobenzene-containing liquid crystalline polymers (azo-LCPs) with a glass-transition temperature of 100 °C is demonstrated. To achieve this, a mechano-assisted photo-programming strategy is used to create a metastable state with room-temperature stable residual stress, which is induced by the isomerization of azobenzene. The programmed rigid azo-LCP can undergo large-amplitude body temperature-triggered shape changes within minutes and can be regenerated without any performance degradation. By changing the programming photomasks and irradiation conditions employed, various 2D to 3D shape-morphing architectures, including folded clips, inch-worm structures, spiral structures, and snap-through motions are achieved. When programmed with polarized light, the proposed strategy results in domain-selective activation, generating designed characteristics in multi-domain azo-LCPs. The reported strategy is therefore expected to broaden the applications of azo-LCPs in the fields of biomedical and flexible microelectronic devices.


Assuntos
Compostos Azo , Temperatura Corporal , Humanos , Compostos Azo/química , Polímeros/química , Temperatura
5.
ACS Appl Mater Interfaces ; 14(17): 19515-19523, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35452216

RESUMO

Oxygen redox (OR) reactions in sodium layered oxide cathodes have been studied intensively to harness their full potential in achieving high energy density for sodium-ion batteries (SIBs). However, OR triggers a large hysteretic voltage during discharge after the first charge process for OR-based oxides, and its intrinsic origin is unclear. Therefore, in this study, an in-depth reinvestigation on the fundamentals of the reaction mechanism in Na[Li1/3Mn2/3]O2 with a Mn/Li ratio (R) of 2 was performed to determine the factors that polarize the OR activity and to provide design rules leading to nonhysteretic oxygen capacity using first-principles calculations. Based on thermodynamic energies, the O2-/O22- and O2-/On- conditions reveal the monophasic (0.0 ≤ x ≤ 4/6) and biphasic (4/6 ≤ x ≤ 1.0) reactions in Na1-x[Li2/6Mn4/6]O2, but each stability at x = 5/6 is observed differently. The O-O bond population elucidates that the formation of an interlayer O-O dimer is a critical factor in triggering hysteretic oxygen capacity, whereas that in a mixed layer provides nonhysteretic oxygen capacity after the first charge. In addition, the migration of Li into the 4h site in the Na metallic layer contributes less to the occurrence of voltage hysteresis because of the suppression of the interlayer O-O dimer. These results are clearly elucidated using the combined-phase mixing enthalpies and chemical potentials during the biphasic reaction. To compare the Mn oxide with R = 2, Na1-x[Li1/6Mn5/6]O2 tuned with R = 5 was investigated using the same procedure, and all the impeding factors in restraining the nonhysteretic OR were not observed. Herein, we suggest two strategies based on three types of OR models: (i) exploiting the migration of Li ions for the suppression of the interlayer O-O dimer and (ii) modulating the Mn/Li ratio for controlling the OR participation, which provides an exciting direction for nonhysteretic oxygen capacities for SIBs and lithium-ion batteries.

6.
ACS Appl Mater Interfaces ; 14(7): 9057-9065, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35156804

RESUMO

Nonhysteretic redox capacity is a critical factor in achieving high energy density without energy loss during cycling for rechargeable battery electrodes, which has been considered a major challenge in oxygen redox (OR) for Li-excess layered oxide cathodes for lithium-ion batteries (LIBs). Until recently, transition metal migration into the Li metal layer and the formation of O-O dimers have been considered major factors affecting hysteretic oxygen capacity. However, Li-excess layered oxides, particularly Ru oxides, exhibit peculiar voltage hysteresis that cannot be sufficiently described by only these factors. Therefore, this study aims to unlock the critical impeding factors in restraining the non-polarizing oxygen capacity of Li-excess layered oxides (herein, Li2RuO3) that exhibit reversible OR reactions. First, Li2RuO3 undergoes an increase in the chemical potential fluctuation as both the thermodynamic material instability and vacancy content increase. Second, the chemical compression of O-O bonds occurs at the early stage of the OR reaction (0.5 ≤ x ≤ 0.75) for Li1-xRu0.5O1.5, leading to flexible voltage hysteresis. Finally, in the range of 0.75 ≤ x ≤ 1.0, for Li1-xRu0.5O1.5, the formation of an O(2p)-O(2p)* antibonding state derived from the structural distortion of the RuO6 octahedron leads to the irreversibility of the OR reaction and enhanced voltage hysteresis. Consequently, our study unlocks the new decisive factor, namely, the structural distortion inducing the O(2p)-O(2p)* antibonding state, of the hysteretic oxygen capacity and provides insights into enabling the full potential of the OR reaction for Li-excess layered oxides for advanced LIBs.

7.
Nanomicro Lett ; 14(1): 49, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35076794

RESUMO

Active electronics are usually composed of semiconductor and metal electrodes which are connected by multiple vacuum deposition steps and photolithography patterning. However, the presence of interface of dissimilar material between semiconductor and metal electrode makes various problems in electrical contacts and mechanical failure. The ideal electronics should not have defective interfaces of dissimilar materials. In this study, we developed a novel method to fabricate active electronic components in a monolithic seamless fashion where both metal and semiconductor can be prepared from the same monolith material without creating a semiconductor-metal interface by reversible selective laser-induced redox (rSLIR) method. Furthermore, rSLIR can control the oxidation state of transition metal (Cu) to yield semiconductors with two different bandgap states (Cu2O and CuO with bandgaps of 2.1 and 1.2 eV, respectively), which may allow multifunctional sensors with multiple bandgaps from the same materials. This novel method enables the seamless integration of single-phase Cu, Cu2O, and CuO, simultaneously while allowing reversible, selective conversion between oxidation states by simply shining laser light. Moreover, we fabricated a flexible monolithic metal-semiconductor-metal multispectral photodetector that can detect multiple wavelengths. The unique monolithic characteristics of rSLIR process can provide next-generation electronics fabrication method overcoming the limitation of conventional photolithography methods.

8.
ACS Omega ; 6(14): 9492-9499, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33869929

RESUMO

Graphite is currently utilized as anode materials for Li-ion batteries, but it is well-known that graphite does not show good electrochemical performances as the anode material for sodium-ion batteries (SIBs). It was also reported that the low electrochemical performances of graphite originated from the larger ionic radius of the sodium ion due to the required higher strain energy for sodium-ion intercalation into graphite leading to an unstable sodium-ion intercalated graphite intercalation compound (GIC). In this work, using first-principles calculations, we introduce pillaring effects of Na n X (n = 3 and 4; X = F, Cl, or Br) halide clusters in GICs, which become electrochemically active for Na redox reactions. Specifically, to enable sodium-ion intercalation into graphite, the interlayer spacing of graphite is required to increase over 3.9 Å, and Na n X halide cluster GICs maintain an expanded interlayer spacing of >3.9 Å. This enlarged interlayer spacing of Na n X halide cluster GICs facilitates stable intercalation of sodium ions. Na3F, Na4Cl, and Na4Br halide clusters are identified as suitable pillar candidates for anode materials because they not only expand the interlayer spacing but also provide reasonable binding energy for intercalated sodium ions for reversible deintercalation. Based on the model analysis, theoretical capacities of Na3F, Na4Cl, and Na4Br halide cluster GICs are estimated respectively to be 186, 155, and 155 mA h g-1. These predictions would provide a rational strategy guiding the search for promising anode materials for SIBs.

9.
Phys Chem Chem Phys ; 23(9): 5438-5446, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33646232

RESUMO

In this study, we present improved power characteristics and suppressed phase transition by incorporating elemental doping into a P2-type cathode of sodium ion batteries. A Cu-doped Fe-Mn based P2-type Na0.67Cu0.125Fe0.375Mn0.5O2 cathode was designed based on the calculations of the electronic structure and then examined experimentally. Using first principles, we introduced instrinsic p-type conductivity by elemental doping with Cu. Introduction of Cu generated electron holes above the Fermi level in the electronic structure, which is typical of p-type semiconductors. Charge analyses suggested that the hole generation was driven primarily by the greater reduced characteristics of Cu as compared with those of Fe and Mn. In addition, introduction of Cu retaining high reduced property also suppressed phase transition from the P2 to Z phase by Fe migration to empty Na layers mainly. Electrochemical experiments revealed improved power characteristics upon the introduction of p-type conductivity. This could be attributed to the increase in the electronic conductivity by hole generation in the valence band. This study suggests that the introduction of p-type conductivity could be a rational tactic for the development of promising cathode materials for high performance sodium ion batteries.

10.
Phys Rev E ; 103(1-1): 012703, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33601526

RESUMO

The azobenzene-containing crosslinked liquid crystalline polymer is a potential candidate for a stimuli-responsive soft robot, as it provides contactless actuation without the implementation of any separate component. For facilitating practical applications of this novel material, complicated and predefined motions have been realized by tailoring the chemical structure of the polymer network. However, conventional multiscale mechanical analysis, which utilizes the all-atom molecular dynamics to represent a microscopic model, is unsuitable for handling diverse material design parameters due to excessive computational costs. Hence, a multiscale optomechanical simulation framework, which combines the coarse-grained molecular dynamics (CG MD) and the finite-element (FE) method, is developed in this study. The CG MD simulation satisfactorily reproduces the light-induced phase transition and photosoftening effect on the mechanical properties. In particular, using the mesoscale analysis, the presented methodology can treat diverse morphology parameters (liquid crystal phase, spacer length, and crosslinking density) to observe the associated photodeformations. The photostrain and elastic modulus profiles in terms of photoisomerization ratio are implemented into the continuum-scale governing equation, which is based on the neoclassical elasticity theory. To efficiently reflect the light-induced large rotations of liquid crystal mesogens and the corresponding geometric nonlinearity, a corotational formulation is employed in the FE shell model. We examine the mesostructural-morphology-dependent photobending deformations of the nematic and smectic photoresponsive polymers (PRPs). In addition, the mesoscopic-texture-mediated unique 3D deformations are investigated by modeling the topological defects. This study offers insight into the engineering of PRP materials for designing the mechanical motions of smart actuators.

11.
Science ; 371(6528): 494-498, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33510023

RESUMO

Success in making artificial muscles that are faster and more powerful and that provide larger strokes would expand their applications. Electrochemical carbon nanotube yarn muscles are of special interest because of their relatively high energy conversion efficiencies. However, they are bipolar, meaning that they do not monotonically expand or contract over the available potential range. This limits muscle stroke and work capacity. Here, we describe unipolar stroke carbon nanotube yarn muscles in which muscle stroke changes between extreme potentials are additive and muscle stroke substantially increases with increasing potential scan rate. The normal decrease in stroke with increasing scan rate is overwhelmed by a notable increase in effective ion size. Enhanced muscle strokes, contractile work-per-cycle, contractile power densities, and energy conversion efficiencies are obtained for unipolar muscles.


Assuntos
Órgãos Artificiais , Contração Muscular , Músculos , Nanotubos de Carbono
12.
ACS Appl Mater Interfaces ; 12(20): 22789-22797, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32345005

RESUMO

Manganese-based spinel cathode materials for sodium-ion batteries (SIBs) are promising candidates for next-generation batteries; especially, Na[Ni0.5Mn1.5]O4 (NNMO) should get attention because of its relatively high operating voltage and firm octahedral host structure. Here, first-principles calculations and the phase field method are used to elucidate the reasons for the low performance of NNMO compared with Li[Ni0.5Mn1.5]O4, and we determine the requirements for realizing high-performance cathode materials for SIBs. Owing to the Ni2+/Ni4+ double redox, NNMO could operate at a high voltage; however, the large Na+ increases the local site energy of the redox center, promoting electron extraction from the redox center, leading to unexpected voltage loss. Additionally, the homogeneous free energy confirms that NNMO would undergo phase separation into fully intercalated and deintercalated phases, inducing lattice misfits along the interfaces of the two phases. Particularly, a higher phase transition barrier and large Na+ cause fast phase separation, inducing increased polarization and severe stress field upon cycling. The present analysis with comprehensive first-principles calculations and the phase field method provides three critical factors toward high electrochemical performance: (i) strengthening Ni-O bonding to avoid undesirable voltage loss, (ii) increasing the vacancy/Na solubility during (de)sodiation to enhance cyclability, and (iii) suppressing the structural distortion during (de)sodiation to prevent mechanical failure. Based on these crucial points, additionally, we suggest the M-pillared Na1-xMx[Ni0.5Mn1.5]O4 (monovalent or divalent species, M), where the M works to strengthen the redox center for improved energy density and to alleviate the drastic structural change and voltage hysteresis for better cyclability, would have superior electrochemical performance as a cathode material for SIBs.

13.
Angew Chem Int Ed Engl ; 59(22): 8681-8688, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32031283

RESUMO

Redox reactions of oxygen have been considered critical in controlling the electrochemical properties of lithium-excessive layered-oxide electrodes. However, conventional electrode materials without overlithiation remain the most practical. Typically, cationic redox reactions are believed to dominate the electrochemical processes in conventional electrodes. Herein, we show unambiguous evidence of reversible anionic redox reactions in LiNi1/3 Co1/3 Mn1/3 O2 . The typical involvement of oxygen through hybridization with transition metals is discussed, as well as the intrinsic oxygen redox process at high potentials, which is 75 % reversible during initial cycling and 63 % retained after 10 cycles. Our results clarify the reaction mechanism at high potentials in conventional layered electrodes involving both cationic and anionic reactions and indicate the potential of utilizing reversible oxygen redox reactions in conventional layered oxides for high-capacity lithium-ion batteries.

14.
Nat Commun ; 10(1): 3385, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477690

RESUMO

Irreversible phase transformation of layered structure into spinel structure is considered detrimental for most of the layered structure cathode materials. Here we report that this presumably irreversible phase transformation can be rendered to be reversible in sodium birnessite (NaxMnO2·yH2O) as a basic structural unit. This layered structure contains crystal water, which facilitates the formation of a metastable spinel-like phase and the unusual reversal back to layered structure. The mechanism of this phase reversibility was elucidated by combined soft and hard X-ray absorption spectroscopy with X-ray diffraction, corroborated by first-principle calculations and kinetics investigation. These results show that the reversibility, modulated by the crystal water content between the layered and spinel-like phases during the electrochemical reaction, could activate new cation sites, enhance ion diffusion kinetics and improve its structural stability. This work thus provides in-depth insights into the intercalating materials capable of reversible framework changes, thereby setting the precedent for alternative approaches to the development of cathode materials for next-generation rechargeable batteries.

15.
ACS Appl Mater Interfaces ; 11(34): 30894-30901, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31389688

RESUMO

Recently, the substitution of inactive elements has been reported as a promising strategy for improving the structural stability and electrochemical performance of layered cathode materials for sodium-ion batteries (SIBs). In this regard, we investigated the positive effects of inactive Ti substitution into O3-type NaFe0.25Ni0.25Mn0.5O2 based on first-principles calculations and electrochemical experiments. After Ti substitution, Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2 exhibits improved capacity retention and rate capability compared with Ti-free NaFe0.25Ni0.25Mn0.5O2. Such an improvement is primarily attributed to the enhanced structural stability and lowered activation energy for Na+ migration, which is induced by Ti substitution in the host structure. Based on first-principles calculations of the average net charges and partial densities of states, we suggest that Ti substitution effectively enhances the binding between transition metals and oxygen by increasing the oxygen electron density, which in turn lowers the energy barrier of Na+ migration, leading to a notable enhancement in the rate capability of Na[Ti0.03(Fe0.25Ni0.25Mn0.5)0.97]O2. Compared with other inactive elements (e.g., Al and Mg), Ti is a more suitable substituent for improving the electrochemical properties of layered cathode materials because of its large total charge variation contributing to capacity. The results of this study provide practical guidelines for developing highly reliable layered cathode materials for SIBs.

16.
Arch Plast Surg ; 46(4): 386-389, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31336428

RESUMO

The development of breast implant technology continues to evolve over time, but changes in breast shape after implantation have not been fully elucidated. Thus, we performed computerized finite element analysis in order to better understand the trajectory of changes and stress variation after breast implantation. The finite element analysis of changes in breast shape involved two components: a static analysis of the position where the implant is inserted, and a dynamic analysis of the downward pressure applied in the direction of gravity during physical activity. Through this finite element analysis, in terms of extrinsic changes, it was found that the dimensions of the breast implant and the position of the top-point did not directly correspond to the trajectory of changes in the breast after implantation. In addition, in terms of internal changes, static and dynamic analysis showed that implants with a lower top-point led to an increased amount of stress applied to the lower thorax. The maximum stress values were 1.6 to 2 times larger in the dynamic analysis than in the static analysis. This finding has important implications for plastic surgeons who are concerned with long-term changes or side effects, such as bottoming-out, after anatomic implant placement.

17.
ACS Appl Mater Interfaces ; 11(21): 19183-19190, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31084026

RESUMO

The use of high-capacity electrode materials (i.e., Si) in Li-ion batteries is hindered by their mechanical degradation. Thus, oxides (i.e., SiO2) are commonly used to obtain high expected capacities and long-term cycle performances. Despite extensive studies of the electrochemical-mechanical behaviors of high-capacity energy storage materials, the mechanical behaviors of amorphous SiO2 during electrochemical reaction remain largely unknown. Here, we systematically investigate the stress evolution, electronic structure, and mechanical deformation of lithiated SiO2 through first-principles computation and the finite element method. The structural and thermodynamic role of O in the amorphous Li-O-Si system is reported and compared with that in Si. Strong Si-O bonds in SiO2 show high mechanical strength and brittle behavior, but as Li is inserted, the Li-rich SiO2 phases become mechanically softened. The relaxation kinetics of SiO2, inducing deviatoric inelastic strains under mechanical constraints, is also compared with that of Si. The finite element model including the kinetic model for anisotropic expansion demonstrates that the long-term cycling stability of core-shell Si-SiO2 nanoparticles mainly arises from the reaction kinetics and high mechanical strength of SiO2. These results provide fundamental insights into the chemomechanical behavior of SiO2 for practical use.

18.
Nat Commun ; 10(1): 5203, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617270

RESUMO

Manganese based layered oxides have received increasing attention as cathode materials for sodium ion batteries due to their high theoretical capacities and good sodium ion conductivities. However, the Jahn-Teller distortion arising from the manganese (III) centers destabilizes the host structure and deteriorates the cycling life. Herein, we report that zinc-doped Na0.833[Li0.25Mn0.75]O2 can not only suppress the Jahn-Teller effect but also reduce the inherent phase separations. The reduction of manganese (III) amount in the zinc-doped sample, as predicted by first-principles calculations, has been confirmed by its high binding energies and the reduced octahedral structural variations. In the viewpoint of thermodynamics, the zinc-doped sample has lower formation energy, more stable ground states, and fewer spinodal decomposition regions than those of the undoped sample, all of which make it charge or discharge without any phase transition. Hence, the zinc-doped sample shows superior cycling performance, demonstrating that zinc doping is an effective strategy for developing high-performance layered cathode materials.

19.
ACS Appl Mater Interfaces ; 10(12): 10419-10427, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29504740

RESUMO

Nastic movements in plants that occur in response to environmental stimuli have inspired many man-made shape-morphing systems. Tendril is an exemplification serving as a parasitic grasping component for the climbing plants by transforming from a straight shape into a coiled configuration via the asymmetric contraction of internal stratiform plant tissues. Inspired by tendrils, this study using a three-dimensional (3D) printing approach developed a class of soft grippers with preprogrammed deformations being capable of imitating the general motions of plant tendrils, including bending, spiral, and helical distortions for grasping. These grippers initially in flat configurations were tailored from a polymer-paper bilayer composite sheet fabricated via 3D printing a polymer on the paper substrate with different patterns. The rough and porous paper surface provides a printed polymer that is well-adhered to the paper substrate which in turn serves as a passive strain-limiting layer. During printing, the melted polymer filament is stretched, enabling the internal strain to be stored in the printed polymer as memory, and then it can be thermally released, which will be concurrently resisted by the paper layer, resulting in various transformations based on the different printed geometries. These obtained transformations were then used for designing grippers to grasp objects with corresponding motions. Furthermore, a fully equipped robotic tendril with three segments was reproduced, where one segment was used for grasping the object and the other two segments were used for forming a tendril-like twistless spring-like structure. This study further helps in the development of soft robots using active polymer materials for engineered systems.

20.
Sci Rep ; 7(1): 14277, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079754

RESUMO

Concentrated light-absorption on specific areas of polystyrene (PS) sheet induces self-folding behaviour. Such localized light-absorption control is easily realized by black-coloured line pattern printing. As the temperature in the line patterns of PS sheet increases differently due to the transparencies in each line pattern, localized thermal contraction generates folding deformation of the PS sheet. The light-activated folding technique is caused by the shape memory effect of PS sheet. The shape memory creation procedure (SMCP) is described by using molecular dynamic (MD) simulation, and the constitutive model of PS sheet is identified. This study employs the shell/cohesive line element for the folding deformation of PS sheet, and utilizes the constitutive model obtained from the MD simulation. Based on the continuum-model analysis of the PS sheet folding deformation activated by light, various self-folding structures are designed and manufactured.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...