Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(25): e2308662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666427

RESUMO

Cancer vaccines offer a promising avenue in cancer immunotherapy by inducing systemic, tumor-specific immune responses. Tumor extracellular vesicles (TEVs) are nanoparticles naturally laden with tumor antigens, making them appealing for vaccine development. However, their inherent malignant properties from the original tumor cells limit their direct therapeutic use. This study introduces a novel approach to repurpose TEVs as potent personalized cancer vaccines. The study shows that inhibition of both YAP and autophagy not only diminishes the malignancy-associated traits of TEVs but also enhances their immunogenic attributes by enriching their load of tumor antigens and adjuvants. These revamped TEVs, termed attenuated yet immunogenically potentiated TEVs (AI-TEVs), showcase potential in inhibiting tumor growth, both as a preventive measure and a possible treatment for recurrent cancers. They prompt a tumor-specific and enduring immune memory. In addition, by showing that AI-TEVs can counteract cancer growth in a personalized vaccine approach, a potential strategy is presented for developing postoperative cancer immunotherapy that's enduring and tailored to individual patients.


Assuntos
Vacinas Anticâncer , Vesículas Extracelulares , Medicina de Precisão , Vesículas Extracelulares/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Animais , Camundongos , Medicina de Precisão/métodos , Humanos , Modelos Animais de Doenças , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Linhagem Celular Tumoral , Antígenos de Neoplasias/imunologia , Feminino
2.
Exp Mol Med ; 54(10): 1652-1657, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36192487

RESUMO

The ferritin nanocage is an endogenous protein that exists in almost all mammals. Its hollow spherical structure that naturally stores iron ions has been diversely exploited by researchers in biotherapeutics. Ferritin has excellent biosafety profiles, and the nanosized particles exhibit rapid dispersion and controlled/sustained release pharmacokinetics. Moreover, the large surface-to-volume ratio and the disassembly/reassembly behavior of the 24 monomer subunits into a sphere allow diverse modifications by chemical and genetic methods on the surface and inner cage of ferritin. Here, we critically review ferritin and its applications. We (i) introduce the application of ferritin in drug delivery; (ii) present an overview of the use of ferritin in imaging and diagnosis for biomedical purposes; (iii) discuss ferritin-based vaccines; and (iv) review ferritin-based agents currently in clinical trials. Although there are no currently approved drugs based on ferritin, this multifunctional protein scaffold shows immense potential in drug development in diverse categories, and ferritin-based drugs have recently entered phase I clinical trials. This golden shortlist of recent developments will be of immediate benefit and interest to researchers studying ferritin and other protein-based biotherapeutics.


Assuntos
Ferritinas , Ferro , Animais , Ferritinas/química , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Diagnóstico por Imagem , Mamíferos/metabolismo
3.
Neurobiol Dis ; 39(3): 311-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20451607

RESUMO

The c-Jun N-terminal kinase (JNK) pathway potentially links together the three major pathological hallmarks of Alzheimer's disease (AD): development of amyloid plaques, neurofibrillary tangles, and brain atrophy. As activation of the JNK pathway has been observed in amyloid models of AD in association with peri-plaque regions and neuritic dystrophy, as we confirm here for Tg2576/PS(M146L) transgenic mice, we directly tested whether JNK inhibition could provide neuroprotection in a novel brain slice model for amyloid precursor protein (APP)-induced neurodegeneration. We found that APP/amyloid beta (Abeta)-induced neurodegeneration is blocked by both small molecule and peptide inhibitors of JNK, and provide evidence that this neuroprotection occurs downstream of APP/Abeta production and processing. Our findings demonstrate that Abeta can induce neurodegeneration, at least in part, through the JNK pathway and suggest that inhibition of JNK may be of therapeutic utility in the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Degeneração Neural/prevenção & controle , Neurônios/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Análise de Variância , Animais , Western Blotting , Encéfalo/patologia , Modelos Animais de Doenças , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA