Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(20): 26613-26623, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728055

RESUMO

Strain gauges, particularly for wearable sensing applications, require a high degree of stretchability, softness, sensitivity, selectivity, and linearity. They must also steer clear of challenges such as mechanical and electrical hysteresis, overshoot behavior, and slow response/recovery times. However, current strain gauges face challenges in satisfying all of these requirements at once due to the inevitable trade-offs between these properties. Here, we present an innovative method for creating strain gauges from spongy Ag foam through a steam-etching process. This method simplifies the traditional, more complex, and costly manufacturing techniques, presenting an eco-friendly alternative. Uniquely, the strain gauges crafted from this method achieve an unparalleled gauge factor greater than 8 × 103 at strains exceeding 100%, successfully meeting all required attributes without notable trade-offs. Our work includes systematic investigations that reveal the intricate structure-property-performance relationship of the spongy Ag foam with practical demonstrations in areas such as human motion monitoring and human-robot interaction. These breakthroughs pave the way for highly sensitive and selective strain gauges, showing immediate applicability across a wide range of wearable sensing applications.

2.
Chem Rev ; 124(4): 1464-1534, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38314694

RESUMO

Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes
3.
Sci Adv ; 10(1): eadk4295, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170779

RESUMO

Advances in electroluminescent threads, suitable for weaving or knitting, have opened doors for the development of light-emitting textiles, driving growth in the market for flexible and wearable displays. Although direct embroidery of these textiles with custom designs and patterns could offer substantial benefits, the rigorous demands of machine embroidery challenge the integrity of these threads. Here, we present embroiderable multicolor electroluminescent threads-in blue, green, and yellow-that are compatible with standard embroidery machines. These threads can be used to stitch decorative designs onto various consumer fabrics without compromising their wear resistance or light-emitting capabilities. Demonstrations include illuminating specific messages or designs on consumer products and delivering emergency alerts on helmet liners for physical hazards. Our research delivers a comprehensive toolkit for integrating light-emitting textiles into trendy, customized crafts tailored to the unique requirements of diverse flexible and wearable displays.

4.
ACS Nano ; 17(22): 22733-22743, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37933955

RESUMO

E-textiles, also known as electronic textiles, seamlessly merge wearable technology with fabrics, offering comfort and unobtrusiveness and establishing a crucial role in health monitoring systems. In this field, the integration of custom sensor designs with conductive polymers into various fabric types, especially in large areas, has presented significant challenges. Here, we present an innovative additive patterning method that utilizes a dual-regime spray system, eliminating the need for masks and allowing for the programmable inscription of sensor arrays onto consumer textiles. Unlike traditional spray techniques, this approach enables in situ, on-the-fly polymerization of conductive polymers, enabling intricate designs with submillimeter resolution across fabric areas spanning several meters. Moreover, it addresses the nozzle clogging issues commonly encountered in such applications. The resulting e-textiles preserve essential fabric characteristics such as breathability, wearability, and washability while delivering exceptional sensing performance. A comprehensive investigation, combining experimental, computational, and theoretical approaches, was conducted to examine the critical factors influencing the operation of the dual-regime spraying system and its role in e-textile fabrication. These findings provide a flexible solution for producing e-textiles on consumer fabric items and hold significant implications for a diverse range of wearable sensing applications.

5.
ACS Appl Mater Interfaces ; 15(12): 16299-16307, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926796

RESUMO

Stretchable sound-in-displays, which can generate synchronous sound and light directly from the display without a separate speaker, allow immersive audio and visual perception even on curved surfaces. In stretchable sound-in-displays, alternating current electroluminescent (ACEL) devices have been used as light-emitting sources owing to their high brightness and stability. However, stretchable ACEL devices that use low dielectric constant (κ) materials require a high operating voltage for generating light and sound. Herein, we demonstrate a stretchable ACEL loudspeaker with a low operating voltage using stretchable high-κ dielectrics and strain-insensitive electrodes. Our device exhibits 87.7 cd/m2 of luminance and 79.70 dB of sound pressure level at an operating voltage of 120 V and 10 kHz. As the next platform of wearable devices, the suggested ACEL loudspeaker exhibits high-quality synchronous light and sound generation performance even under various types of mechanical deformation, such as finger flexion and wrist bending.

6.
Biosensors (Basel) ; 12(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35448282

RESUMO

Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos , Têxteis
7.
Sci Adv ; 8(12): eabj9220, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35333568

RESUMO

Accurate transmission of biosignals without interference of surrounding noises is a key factor for the realization of human-machine interfaces (HMIs). We propose frequency-selective acoustic and haptic sensors for dual-mode HMIs based on triboelectric sensors with hierarchical macrodome/micropore/nanoparticle structure of ferroelectric composites. Our sensor shows a high sensitivity and linearity under a wide range of dynamic pressures and resonance frequency, which enables high acoustic frequency selectivity in a wide frequency range (145 to 9000 Hz), thus rendering noise-independent voice recognition possible. Our frequency-selective multichannel acoustic sensor array combined with an artificial neural network demonstrates over 95% accurate voice recognition for different frequency noises ranging from 100 to 8000 Hz. We demonstrate that our dual-mode sensor with linear response and frequency selectivity over a wide range of dynamic pressures facilitates the differentiation of surface texture and control of an avatar robot using both acoustic and mechanical inputs without interference from surrounding noise.

8.
Adv Mater ; 34(9): e2108021, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34951073

RESUMO

Increasing demand for wearable healthcare synergistically advances the field of electronic textiles, or e-textiles, allowing for ambulatory monitoring of vital health signals. Despite great promise, the pragmatic deployment of e-textiles in clinical practice remains challenged due to the lack of a method in producing custom-designed e-textiles at high spatial resolution across a large area. To this end, a programmable dual-regime spray that enables the direct custom writing of functional nanoparticles into arbitrary fabrics at sub-millimeter resolution over meter scale is employed. The resulting e-textiles retain the intrinsic fabric properties in terms of mechanical flexibility, water-vapor permeability, and comfort against multiple uses and laundry cycles. The e-textiles tightly fit various body sizes and shapes to support the high-fidelity recording of physiological and electrophysiological signals on the skin under ambulatory conditions. Pilot field tests in a remote health-monitoring setting with a large animal, such as a horse, demonstrate the scalability and utility of the e-textiles beyond conventional devices. This approach will be suitable for the rapid prototyping of custom e-textiles tailored to meet various clinical needs.


Assuntos
Dispositivos Eletrônicos Vestíveis , Animais , Eletrônica , Cavalos , Monitorização Ambulatorial , Têxteis
9.
ACS Appl Mater Interfaces ; 12(47): 53184-53192, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191748

RESUMO

Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks. In this study, we present transparent, flexible, and self-healable TA loudspeakers based on silver nanowire (AgNW)-poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit significant self-healing for repairing the surface damages that are caused due to the dynamic reconstruction of reversible bulky urea bonds in PUHU. The fabricated self-healable TA loudspeakers generate a sound pressure level of 61 dB at 10 kHz frequency (alternating current (AC) 7 V/direct current (DC) 1 V). In particular, the TA speakers are able to recover the original sound after healing the surface damages of electrodes at 95 °C and 80% relative humidity within 5 min. We believe that the technique proposed in this study provides a robust and powerful platform for the fabrication of transparent and flexible TA loudspeakers with excellent self-healing, which can be applied in flexible and wearable acoustic electronics.

10.
Adv Sci (Weinh) ; 8(1): 2001647, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33437570

RESUMO

The growing importance of human-machine interfaces and the rapid expansion of the internet of things (IoT) have inspired the integration of displays with sound generation systems to afford stretchable sound-in-display devices and thus establish human-to-machine connections via auditory system visualization. Herein, the synchronized generation of sound and color is demonstrated for a stretchable sound-in-display device with electrodes of strain-insensitive silver nanowires (AgNWs) and emissive layers of field-induced inorganic electroluminescent (EL) phosphors. In this device, EL phosphors embedded in a dielectric elastomer actuator (DEA) emit light under alternating-current bias, while audible sound waves are simultaneously generated via DEA actuation along with input sound signals. The electroluminescence and sound-generation performances of the fabricated device are highly robust and reliable, being insensitive to stretch-release cycling because of the presence of the AgNW stretchable electrodes. The presented principle of integrating light emission and acoustic systems in a single stretchable device can be further expanded to realize sound-in-display electronics for IoT and human-machine interface applications.

11.
Nano Lett ; 20(1): 441-448, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31763856

RESUMO

Near-field electrospinning (NFES) was developed to overcome the intrinsic instability of traditional electrospinning processes and to facilitate the controllable deposition of nanofibers under a reduced electric field. This technique offers a straightforward and versatile method for the precision patterning of two-dimensional (2D) nanofibers. However, three-dimensional (3D) stacked structures built by NFES have been limited to either micron-scale sizes or special shapes. Herein, we report on a direct-write 3D NFES technique to construct self-aligned, template-free, 3D stacked nanoarchitectures by simply adding salt to the polymer solution. Numerical simulations suggested that the electric field could be tuned to achieve self-aligned nanofibers by adjusting the conductivity of the polymer solution. This was confirmed experimentally by using poly(ethylene oxide) (PEO) solutions containing 0.1-1.0 wt% NaCl. Using 0.1 wt% NaCl, nanowalls with a maximum of 80 layers could be built with a width of 92 ± 3 nm, height of 6.6 ± 0.1 µm, and aspect ratio (height/width) of 72. We demonstrate the 3D printing of nanoskyscrapers with various designs, such as curved "nanowall arrays", nano "jungle gyms," and "nanobridges". Further, we present an application of the 3D stacked nanofiber arrays by preparing transparent and flexible polydimethylsiloxane films embedded with Ag-sputtered nanowalls as 3D nanoelectrodes. The conductivity of the nanoelectrodes can be precisely tuned by adjusting the number of 3D printed layers, without sacrificing transmittance (98.5%). The current NFES approach provides a simple, reliable route to build 3D stacked nanoarchitectures with high-aspect ratios for potential application in smart materials, energy devices, and biomedical applications.

12.
IEEE Trans Biomed Circuits Syst ; 13(6): 1535-1544, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31613778

RESUMO

This paper presents a flexible multi-functional physiological sensing system that provides multiple noise-immune readout architectures and hybrid-sensing capability with an analog pre-processing scheme. The proposed multi-functional system is designed to support five physiological detection methodologies of piezo-resistive, pyro-resistive, electro-metric, opto-metric and their hybrid, utilizing an in-house multi-functional e-skin device, in-house flexible electrodes and a LED-photodiode pair. For their functional verification, eight representative physiological detection capabilities were demonstrated using wearable device prototypes. Especially, the hybrid detection method includes an innovative continuous measurement of blood pressure (BP) while most previous wearable devices are not ready for it. Moreover, for effective implementation in the form of the wearable device, post-processing burden of the hybrid method was much reduced by integrating a proposed analog pre-processing scheme, where only simple counting process and calibration remain to estimate the BP. This multi-functional sensor readout circuits and their hybrid-sensing interface are fully integrated into a single readout integrated circuit (ROIC), which is designed to implement three readout paths: two electrometric readout paths and one impedometric readout path. For noise-immune detection of the e-skin sensor, a pseudo-differential front-end with a ripple reduction loop is proposed in the impedometric readout path, and also state-of-the-art body-oriented noise reduction techniques are adopted for the electrometric readout path. The ROIC is fabricated in a CMOS process and in-house e-skin devices and flexible electrodes are also fabricated.


Assuntos
Determinação da Pressão Arterial/instrumentação , Impedância Elétrica , Eletrodos , Humanos , Dispositivos Eletrônicos Vestíveis
13.
Adv Mater ; 31(25): e1808148, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31070272

RESUMO

Biological tissues are multiresponsive and functional, and similar properties might be possible in synthetic systems by merging responsive polymers with hierarchical soft architectures. For example, mechanochromic polymers have applications in force-responsive colorimetric sensors and soft robotics, but their integration into sensitive, multifunctional devices remains challenging. Herein, a hierarchical nanoparticle-in-micropore (NP-MP) architecture in porous mechanochromic polymers, which enhances the mechanosensitivity and stretchability of mechanochromic electronic skins (e-skins), is reported. The hierarchical NP-MP structure results in stress-concentration-induced mechanochemical activation of mechanophores, significantly improving the mechanochromic sensitivity to both tensile strain and normal force (critical tensile strain: 50% and normal force: 1 N). Furthermore, the porous mechanochromic composites exhibit a reversible mechanochromism under a strain of 250%. This architecture enables a dual-mode mechanochromic e-skin for detecting static/dynamic forces via mechanochromism and triboelectricity. The hierarchical NP-MP architecture provides a general platform to develop mechanochromic composites with high sensitivity and stretchability.


Assuntos
Fenômenos Mecânicos , Nanopartículas , Dispositivos Eletrônicos Vestíveis , Cor , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Porosidade , Estresse Mecânico , Resistência à Tração
14.
Sci Adv ; 4(8): eaas8772, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30083604

RESUMO

We demonstrate ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of an orthogonal silver nanowire array embedded in a polymer matrix. Hybrid NMs significantly enhance the electrical and mechanical properties of ultrathin polymer NMs, which can be intimately attached to human skin. As a proof of concept, we present a skin-attachable NM loudspeaker, which exhibits a significant enhancement in thermoacoustic capabilities without any significant heat loss from the substrate. We also present a wearable transparent NM microphone combined with a micropyramid-patterned polydimethylsiloxane film, which provides excellent acoustic sensing capabilities based on a triboelectric voltage signal. Furthermore, the NM microphone can be used to provide a user interface for a personal voice-based security system in that it can accurately recognize a user's voice. This study addressed the NM-based conformal electronics required for acoustic device platforms, which could be further expanded for application to conformal wearable sensors and health care devices.


Assuntos
Acústica/instrumentação , Condutividade Elétrica , Monitorização Fisiológica/métodos , Nanofios/química , Prata/química , Pele/química , Dispositivos Eletrônicos Vestíveis , Eletrodos , Desenho de Equipamento , Humanos
15.
Adv Mater ; 30(28): e1800659, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782678

RESUMO

Improved performance in plasmonic organic solar cells (OSCs) and organic light-emitting diodes (OLEDs) via strong plasmon-coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core-shell silver-silica nanoparticles (Ag@SiO2 NPs) is demonstrated. NP-enhanced plasmonic AgNW (Ag@SiO2 NP-AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon-coupling effect caused by decorating core-shell Ag@SiO2 NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A-1 (at 3.2 V) and a power efficiency of 25.14 lm W-1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2 NP-AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high-performance OODs, which can be further explored in various plasmonic and optoelectronic devices.

16.
ACS Nano ; 12(4): 4045-4054, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29648803

RESUMO

Flexible pressure sensors with a high sensitivity over a broad linear range can simplify wearable sensing systems without additional signal processing for the linear output, enabling device miniaturization and low power consumption. Here, we demonstrate a flexible ferroelectric sensor with ultrahigh pressure sensitivity and linear response over an exceptionally broad pressure range based on the material and structural design of ferroelectric composites with a multilayer interlocked microdome geometry. Due to the stress concentration between interlocked microdome arrays and increased contact area in the multilayer design, the flexible ferroelectric sensors could perceive static/dynamic pressure with high sensitivity (47.7 kPa-1, 1.3 Pa minimum detection). In addition, efficient stress distribution between stacked multilayers enables linear sensing over exceptionally broad pressure range (0.0013-353 kPa) with fast response time (20 ms) and high reliability over 5000 repetitive cycles even at an extremely high pressure of 272 kPa. Our sensor can be used to monitor diverse stimuli from a low to a high pressure range including weak gas flow, acoustic sound, wrist pulse pressure, respiration, and foot pressure with a single device.

17.
ACS Nano ; 11(4): 4346-4357, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28397485

RESUMO

Silver nanowire (AgNW) networks are considered to be promising structures for use as flexible transparent electrodes for various optoelectronic devices. One important application of AgNW transparent electrodes is the flexible touch screens. However, the performances of flexible touch screens are still limited by the large surface roughness and low electrical to optical conductivity ratio of random network AgNW electrodes. In addition, although the perception of writing force on the touch screen enables a variety of different functions, the current technology still relies on the complicated capacitive force touch sensors. This paper demonstrates a simple and high-throughput bar-coating assembly technique for the fabrication of large-area (>20 × 20 cm2), highly cross-aligned AgNW networks for transparent electrodes with the sheet resistance of 21.0 Ω sq-1 at 95.0% of optical transmittance, which compares favorably with that of random AgNW networks (sheet resistance of 21.0 Ω sq-1 at 90.4% of optical transmittance). As a proof of concept demonstration, we fabricate flexible, transparent, and force-sensitive touch screens using cross-aligned AgNW electrodes integrated with mechanochromic spiropyran-polydimethylsiloxane composite film. Our force-sensitive touch screens enable the precise monitoring of dynamic writings, tracing and drawing of underneath pictures, and perception of handwriting patterns with locally different writing forces. The suggested technique provides a robust and powerful platform for the controllable assembly of nanowires beyond the scale of conventional fabrication techniques, which can find diverse applications in multifunctional flexible electronic and optoelectronic devices.

18.
J Mater Chem B ; 4(18): 2999-3018, 2016 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32263040

RESUMO

Flexible electronic devices are regarded as one of the key technologies in wearable healthcare systems, wireless communications and smart personal electronics. For the realization of these applications, wearable energy and sensor devices are the two main technologies that need to be developed into lightweight, miniaturized, and flexible forms. In this review, we introduce recent advances in the controlled design of device structures into bioinspired micro/nanostructures and 2D/3D structures for the enhancement of energy harvesting and multifunctional sensing properties of flexible electronic skins. In addition, we highlight their potential applications in flexible/wearable electronics, sensors, robotics and prosthetics, and biomedical devices.

19.
Nano Lett ; 15(12): 7933-42, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26540011

RESUMO

Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA