Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067760

RESUMO

Multiple forms of interference and noise that impact the receiver's capacity to receive and interpret satellite signals, and consequently the preciseness of positioning and navigation, may be present during the processing of Global Positioning System (GPS) navigation. The non-Gaussian noise predominates in the signal owing to the fluctuating character of both natural and artificial electromagnetic interference, and the algorithm based on the minimum mean-square error (MMSE) criterion performs well when assuming Gaussian noise, but drops when assuming non-Gaussian noise. The maximum correntropy criteria (MCC) adaptive filtering technique efficiently reduces pulse noise and has adequate performance in heavy-tailed noise, which addresses the issue of filter performance caused by the presence of non-Gaussian or heavy-tailed unusual noise values in the localizing measurement noise. The adaptive kernel bandwidth (AKB) technique employed in this paper applies the calculated adaptive variables to generate the kernel function matrix, in which the adaptive factor can modify the size of the kernel width across a reasonably appropriate spectrum, substituting the fixed kernel width for the conventional MCC to enhance the performance. The conventional maximum correntropy criterion-based extended Kalman filter (MCCEKF) algorithm's performance is significantly impacted by the value of the kernel width, and there are certain predetermined conditions in the selection based on experience. The MCCEKF with a fixed adaptive kernel bandwidth (MCCEKF-AKB) has several advantages due to its novel concept and computational simplicity, and gives a qualitative solution for the study of random structures for generalized noise. Additionally, it can effectively achieve the robust state estimation of outliers with anomalous values while guaranteeing the accuracy of the filtering.

2.
Entropy (Basel) ; 25(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37628206

RESUMO

In this paper, we provide geometric insights with visualization into the multivariate Gaussian distribution and its entropy and mutual information. In order to develop the multivariate Gaussian distribution with entropy and mutual information, several significant methodologies are presented through the discussion, supported by illustrations, both technically and statistically. The paper examines broad measurements of structure for the Gaussian distributions, which show that they can be described in terms of the information theory between the given covariance matrix and correlated random variables (in terms of relative entropy). The content obtained allows readers to better perceive concepts, comprehend techniques, and properly execute software programs for future study on the topic's science and implementations. It also helps readers grasp the themes' fundamental concepts to study the application of multivariate sets of data in Gaussian distribution. The simulation results also convey the behavior of different elliptical interpretations based on the multivariate Gaussian distribution with entropy for real-world applications in our daily lives, including information coding, nonlinear signal detection, etc. Involving the relative entropy and mutual information as well as the potential correlated covariance analysis, a wide range of information is addressed, including basic application concerns as well as clinical diagnostics to detect the multi-disease effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA