Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(6)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371783

RESUMO

Medullary thyroid cancer originates from parafollicular C-cells in the thyroid. Despite successful thyroidectomy, localizing remnant cancer cells in patients with elevated calcitonin and carcinoembryonic antigen levels remains a challenge. Extranasal odorant receptors are expressed in cells from non-olfactory tissues, including C-cells. This study evaluates the odorant receptor signals from parafollicular C-cells, specifically, the presence of olfactory marker protein, and further assesses the ability of the protein in localizing and treating medullary thyroid cancer. We used immunohistochemistry, immunofluorescent staining, Western blot, RNA sequencing, and real time-PCR to analyze the expression of odorant receptors in mice thyroids, thyroid cancer cell lines, and patient specimens. We used in vivo assays to analyze acetate binding, calcitonin secretion, and cAMP pathway. We also used positron emission tomography (PET) to assess C11-acetate uptake in medullary thyroid cancer patients. We investigated olfactory marker protein expression in C-cells in patients and found that it co-localizes with calcitonin in C-cells from both normal and cancer cell lines. Specifically, we found that OR51E2 and OR51E1 were expressed in thyroid cancer cell lines and human medullary thyroid cancer cells. Furthermore, we found that in the C-cells, the binding of acetate to OR51E2 activates its migration into the nucleus, subsequently resulting in calcitonin secretion via the cAMP pathway. Finally, we found that C11-acetate, a positron emission tomography radiotracer analog for acetate, binds competitively to OR51E2. We confirmed C11-acetate uptake in cancer cells and in human patients using PET. We demonstrated that acetate binds to OR51E2 in C-cells. Using C11-acetate PET, we identified recurrence sites in post-operative medullary thyroid cancer patients. Therefore, OR51E2 may be a novel diagnostic and therapeutic target for medullary thyroid cancer.

2.
FEBS J ; 287(17): 3841-3870, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32003140

RESUMO

Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the Gαs -cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and Gßγ -phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. DATABASE: Model data are available in the PMDB database under the accession number PM0082389.


Assuntos
Furanos/farmacologia , Microglia/efeitos dos fármacos , Receptores Odorantes/fisiologia , Streptococcus pneumoniae/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/genética , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Citocinas/biossíntese , Citocinas/genética , Furanos/isolamento & purificação , Regulação da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Fagocitose/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Receptores Odorantes/genética , Transdução de Sinais , Superóxidos/metabolismo
3.
Biochem Biophys Res Commun ; 510(3): 383-387, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30711253

RESUMO

Odorant receptors are the largest subfamily of G protein-coupled receptors and were recently suggested to play critical roles in nonolfactory tissues. However, the expression and function of odorant receptors in astrocytes, the most abundant cells in the brain, are not well known. We demonstrate that Olfr920 is highly expressed and propose that it functions as a short-chain fatty acid sensor in primary cortical astrocytes. The short-chain fatty acid isobutyric acid (IBA) was identified via a luciferase assay as an Olfr920 ligand. We show that IBA activates the Gs protein-adenylyl cyclase-cAMP pathway via Olfr920 in primary cortical astrocytes by using cAMP and knockdown analyses. In addition, IBA reduces lipopolysaccharide-induced glial fibrillary acidic protein expression in reactive astrocytes. These results suggest that astrocytic Olfr920 is a potential novel target for increased reactive astrocytes.


Assuntos
Astrócitos/metabolismo , Isobutiratos/farmacologia , Receptores Odorantes/agonistas , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Receptores Odorantes/metabolismo
4.
Photodermatol Photoimmunol Photomed ; 24(3): 110-4, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18477128

RESUMO

BACKGROUND: No comparative and simultaneous in vitro studies have been performed to determine the cytotoxic dose of narrowband UVB (NBUVB) and broadband UVB (BBUVB) for keratinocytes, melanocytes, and fibroblasts. Culture medium was often replaced with phosphate-buffered saline (PBS) before UV irradiation; however, its amount differed across studies. We determined the cytotoxic doses of NBUVB and BBUVB and tested for changes in viability according to the amount of PBS. METHODS: We exposed cultured human keratinocytes, melanocytes, and fibroblasts to ultraviolet light in the range 12.5-1000 mJ/cm(2) for NBUVB and 1.25-100 mJ/cm(2) for BBUVB. The viability was assessed after 24 h. We also determined changes in viability at cytotoxic doses according to the amount of PBS (40, 80, and 120 microl/well in a 96-well plate). RESULTS: Cytotoxicity was observed at doses of 100, 200, and 400 mJ/cm(2) for NBUVB and 5, 10, and 25 mJ/cm(2) for BBUVB in keratinocytes, melanocytes, and fibroblasts, respectively. At cytotoxic doses, there was no change in viability according to the amount of PBS. CONCLUSIONS: Fibroblasts are more resistant to UVB irradiation, irrespective of the amount of NBUVB and BBUVB, than keratinocytes and melanocytes. The amount of PBS during irradiation had no effect on viability.


Assuntos
Fibroblastos/efeitos da radiação , Queratinócitos/efeitos da radiação , Melanócitos/efeitos da radiação , Tolerância a Radiação , Raios Ultravioleta/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta à Radiação , Fibroblastos/fisiologia , Humanos , Queratinócitos/fisiologia , Melanócitos/fisiologia , Fosfatos/farmacologia , Doses de Radiação , Cloreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...