Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(5): 2474-2484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437097

RESUMO

In this paper, we present the Selective Redirection Controller (SRC), which selects the optimal redirection controller based on the physical and virtual environment in Redirected Walking (RDW). The primary advantage of SRC over existing controllers is its dynamic switching among four different redirection controllers (S2C, TAPF, ARC, and SRL) based on the user's environment, as opposed to using a single fixed controller throughout the experience. By switching between redirection controllers based on the context around the user, SRC aims to optimize the advantages of each redirection strategy. The SRC model is trained using reinforcement learning to dynamically and instantaneously switch redirection controllers based on the user's environment. We evaluated the performance of SRC against traditional redirection controllers through simulations and user studies conducted in various physical and virtual environments. The findings indicate that SRC reduces the number of resets significantly compared to traditional redirection controllers. Heat map visualization was utilized during the development process to analyze which redirection controller SRC chooses based on the different environments around the user. SRC alternates between redirection techniques based on the user's environment, maximizing the advantages of each strategy for a superior RDW experience.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38381627

RESUMO

The reset technique of Redirected Walking (RDW) forcibly reorients the user's direction overtly to avoid collisions with boundaries, obstacles, or other users in the physical space. However, excessive resetting can decrease the user's sense of immersion and presence. Several RDW studies have been conducted to address this issue. Among them, much research has been done on reset techniques that reduce the number of resets by devising reset direction rules or optimizing them for a given environment. However, existing optimization studies on reset techniques have mainly focused on a single-user environment. In a multi-user environment, the dynamic movement of other users and static obstacles in the physical space increase the possibility of resetting. In this study, we propose Multi-Agent Reinforcement Resetter (MARR), which resets the user taking into account both physical obstacles and multi-user movement to minimize the number of resets. MARR is trained using multi-agent reinforcement learning to determine the optimal reset direction in different environments. This approach allows MARR to effectively account for different environmental contexts, including arbitrary physical obstacles and the dynamic movements of other users in the same physical space. We compared MARR to other reset technologies through simulation tests and user studies, and found that MARR outperformed the existing methods. MARR improved performance by learning the optimal reset direction for each subtle technique used in training. MARR has the potential to be applied to new subtle techniques proposed in the future. Overall, our study confirmed that MARR is an effective reset technique in multi-user environments.

3.
ACS Omega ; 7(18): 15615-15624, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571819

RESUMO

Encapsulating platinum nanoparticles with a carbon shell can increase the stability of core platinum nanoparticles by preventing their dissolution and agglomeration. In this study, the synthesis mechanism of a platinum core-carbon shell catalyst via thermal reduction of a platinum-aniline complex was investigated to determine how the carbon shell forms and identify the key factor determining the properties of the Pt core-carbon shell catalyst. Three catalysts originating from the complexes with different platinum to carbon precursor ratios were synthesized through pyrolysis. Their structural characteristics were examined using various analysis techniques, and their electrochemical activity and stability were evaluated through half-cell and unit-cell tests. The relationship between the nitrogen to platinum ratio and structural characteristics was revealed, and the effects on the electrochemical activity and stability were discussed. The ratio of the carbon precursor to platinum was the decisive factor determining the properties of the platinum core-carbon shell catalyst.

4.
Chem Rev ; 121(24): 15075-15140, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34677946

RESUMO

A substantial amount of research effort has been directed toward the development of Pt-based catalysts with higher performance and durability than conventional polycrystalline Pt nanoparticles to achieve high-power and innovative energy conversion systems. Currently, attention has been paid toward expanding the electrochemically active surface area (ECSA) of catalysts and increase their intrinsic activity in the oxygen reduction reaction (ORR). However, despite innumerable efforts having been carried out to explore this possibility, most of these achievements have focused on the rotating disk electrode (RDE) in half-cells, and relatively few results have been adaptable to membrane electrode assemblies (MEAs) in full-cells, which is the actual operating condition of fuel cells. Thus, it is uncertain whether these advanced catalysts can be used as a substitute in practical fuel cell applications, and an improvement in the catalytic performance in real-life fuel cells is still necessary. Therefore, from a more practical and industrial point of view, the goal of this review is to compare the ORR catalyst performance and durability in half- and full-cells, providing a differentiated approach to the durability concerns in half- and full-cells, and share new perspectives for strategic designs used to induce additional performance in full-cell devices.


Assuntos
Platina , Polímeros , Catálise , Eletrodos , Eletrólitos/química , Platina/química , Polímeros/química
5.
Top Stroke Rehabil ; 27(8): 610-619, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32252619

RESUMO

Background: Impaired trunk postural control is common after stroke. Combining kinesio taping with trunk rehabilitation has been shown to enhance the recovery of postural control ability in patients with stroke.Objective: We investigated whether the combination of kinesio taping with trunk rehabilitation would improve dynamic and static sitting stability after stroke.Methods: Twenty-eight patients with stroke were recruited and randomly assigned to one of the two 8-week trunk rehabilitation programs with kinesio (experimental group) or placebo taping (control group). Outcome measures were dynamic forward, dynamic backward, affected-side, and unaffected-side sway areas, static sway area and length, and the total limit of stability (LOS) area. The variables were measured using the BioRescue analysis system. All outcome measures were assessed at baseline and after 8 weeks of trunk rehabilitation.Results: Significant increases were observed in the dynamic forward, dynamic backward, affected-side, and unaffected-side sway areas, and the total LOS area, in the experimental and control groups, whereas decreases were observed in the static sway area and length. The dynamic forward sway area was significantly higher in the experimental group than in the control group, but there were no significant differences between the groups in the other variables.Conclusions: Trunk rehabilitation is effective for improving dynamic and static sitting stability after stroke. The addition of kinesio taping to the back muscles further increases forward mobility.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Equilíbrio Postural , Postura Sentada , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Tronco
6.
Sci Adv ; 6(5): eaaw0870, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32064327

RESUMO

In polymer electrolyte fuel cells (PEFCs), protons from the anode are transferred to the cathode through the ionomer membrane. By impregnating the ionomer into the electrodes, proton pathways are extended and high proton transfer efficiency can be achieved. Because the impregnated ionomer mechanically binds the catalysts within the electrode, the ionomer is also called a binder. To yield good electrochemical performance, the binder should be homogeneously dispersed in the electrode and maintain stable interfaces with other catalyst components and the membrane. However, conventional binder materials do not have good dispersion properties. In this study, a facile approach based on using a supercritical fluid is introduced to prepare a homogeneous nanoscale dispersion of the binder material in aqueous alcohol. The prepared binder exhibited high dispersion characteristics, crystallinity, and proton conductivity. High performance and durability were confirmed when the binder material was applied to a PEFC cathode electrode.

7.
Nanoscale ; 12(4): 2542-2554, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932838

RESUMO

Nitrogen-doped carbon-encapsulated non-noble metals are promising electrocatalytic alternatives to Pt for the oxygen reduction reaction (ORR). Herein, we describe the efficient synthesis of nitrogen- and fluorine-doped carbon-encapsulated Fe/Fe3C (NFC@Fe/Fe3C) crystals from a Fe-poly(aniline-fluoro-aniline) co-polymer and demonstrate their use as efficient ORR electrocatalysts in acidic and alkaline environments. X-ray diffraction patterns, scanning electron microscopy, transmission electron microscopy, Raman spectra, and X-ray photoelectron spectroscopy are used to determine the structural properties of NFC@Fe/Fe3C. Of the NFC@Fe/Fe3C catalysts, NFC@Fe/Fe3C-9 demonstrates superior ORR electrocatalytic activity in both alkaline and acidic environments. NFC@Fe/Fe3C-9 follows a four-electron-transfer ORR pathway in alkaline and acidic media. Under alkaline conditions, NFC@Fe/Fe3C-9 displays a half-wave potential (E1/2) as 0.870 V, which is 16 mV higher than that of Pt/C, and its durability decay is 26 mV over 50 000 cycles. In acidic medium, the NFC@Fe/Fe3C-9 electrode shows inferior ORR performance than does Pt/C, but it is more durable, with only 27 mV decay over 30 000 cycles. A single cell performance of NFC@Fe/Fe3C-9 was tested with a proton-exchange membrane fuel cells (PEMFC) and an anion-exchange membrane fuel cell (AEMFC) with an active area of 5 cm2. The PEMFC single cell exhibits the maximum power density of 237 mW cm-2 with a back pressure of 250 kPa, while the AEMFC delivers a maximum power density of 96 mW cm-2 without back pressure.

8.
Small ; 16(1): e1905868, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31788955

RESUMO

Beyond a traditional view that metal nanoparticles formed upon electrochemical reaction are inactive against lithium, recently their electrochemical participations are manifested and elucidated as catalytic and interfacial effects. Here, ruthenium metal composed of ≈5 nm nanoparticles is prepared and the pure ruthenium as a lithium-ion battery anode for complete understanding on anomalous lithium storage reaction mechanism is designed. In particular, the pure metal electrode is intended for eliminating the electrochemical reaction-derived Li2 O phase accompanied by catalytic Li2 O decomposition and the interfacial lithium storage at Ru/Li2 O phase boundary, and thereby focusing on the ruthenium itself in exploring its electrochemical reactivity. Intriguingly, unusual lithium storage not involving redox reactions with electron transfer but leading to lattice expansion is identified in the ruthenium electrode. Size-dependent charge redistribution at surface enables additional lithium adsorption to occur on the inactive but more environmentally sensitive nanoparticles, providing innovative insight into dynamic electrode environments in rechargeable lithium chemistry.

9.
ACS Appl Mater Interfaces ; 11(38): 34805-34811, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31469540

RESUMO

The recent development of ultrathin anion exchange membranes and optimization of their operating conditions have significantly enhanced the performance of alkaline-membrane fuel cells (AMFCs); however, the effects of the membrane/electrode interface structure on the AMFC performance have not been seriously investigated thus far. Herein, we report on a high-performance AMFC system with a membrane/electrode interface of novel design. Commercially available membranes are modified in the form of well-aligned line arrays of both the anode and cathode sides by means of a solvent-assisted molding technique and sandwich-like assembly of the membrane and polydimethylsiloxane molds. Upon incorporating the patterned membranes into a single-cell system, we observe a significantly enhanced performance of up to ∼35% compared with that of the reference membrane. The enlarged interface area and reduced membrane thickness from the line-patterned membrane/electrode interface result in improved water management, reduced ohmic resistance, and effective utilization of the catalyst. We believe that our findings can significantly contribute further advancements in AMFCs.

10.
Sci Rep ; 8(1): 1257, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352249

RESUMO

Guided cracks were successfully generated in an electrode using the concentrated surface stress of a prism-patterned Nafion membrane. An electrode with guided cracks was formed by stretching the catalyst-coated Nafion membrane. The morphological features of the stretched membrane electrode assembly (MEA) were investigated with respect to variation in the prism pattern dimension (prism pitches of 20 µm and 50 µm) and applied strain (S ≈ 0.5 and 1.0). The behaviour of water on the surface of the cracked electrode was examined using environmental scanning electron microscopy. Guided cracks in the electrode layer were shown to be efficient water reservoirs and liquid water passages. The MEAs with and without guided cracks were incorporated into fuel cells, and electrochemical measurements were conducted. As expected, all MEAs with guided cracks exhibited better performance than conventional MEAs, mainly because of the improved water transport.

11.
RSC Adv ; 8(56): 32231-32240, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35547481

RESUMO

Biomass-derived carbon, as a low-cost material source, is an attractive choice to prepare carbon materials, thus providing an alternative to by-product and waste management. Herein, we report the preparation of carbon from hemp stem as a biomass precursor through a simple, low-cost, and environment-friendly method with using steam as the activating agent. The hemp-derived carbon with a hierarchically porous structure and a partial graphitization in amorphous domains was developed, and for the first time, it was applied as an anode material for lithium-ion battery. Natural hemp itself delivers a reversible capacity of 190 mA h g-1 at a rate of 300 mA g-1 after 100 cycles. Ball-milling of hemp-derived carbon is further designed to control the physical properties, and consequently, the capacity of milled hemp increases to 300 mA h g-1 along with excellent rate capability of 210 mA h g-1 even at 1.5 A g-1. The milled hemp with increased graphitization and well-developed meso-porosity is advantageous for lithium diffusion, thus enhancing electrochemical performance via both diffusion-controlled intercalation/deintercalation and surface-limited adsorption/desorption. This study not only demonstrates the application of hemp-derived carbon in energy storage devices, but also guides a desirable structural design for lithium storage and transport.

12.
RSC Adv ; 8(63): 36313-36322, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-35558447

RESUMO

The large-area membrane-electrode assembly (MEA) has been fabricated using the decal transfer method with a methanol (MeOH)-based PtRu/C catalyst slurry. The stability of slurry dispersion is important when using a large-area decal transfer method to ensure the integrity of the electrode. In order to prepare stable and well dispersed catalyst slurry, a suitable solvent for the PtRu/C catalyst should be selected. We considered the physical properties of various organic solvents, including ionomer solubility, dielectric constant, and catalyst particle surface physical properties. We found that the MeOH-based PtRu/C slurry dispersion showed the best stability and dispersibility of catalyst-ionomer agglomerates. It was also confirmed that the MeOH-based slurry has the most suitable characteristics for coating the slurry on the substrate film. The decal technique-based MEA using this slurry showed excellent performance when compared with the spray method-based MEA. Furthermore, the large-area PtRu/C MEA with an active area of 51.84 cm2 was fabricated and excellent performance was realized even when a reforming gas was used.

13.
J Photochem Photobiol B ; 174: 323-332, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28818778

RESUMO

Ultraviolet (UV) radiation has adverse effects on extracellular matrix (ECM) proteins, leading to formation of wrinkles a hallmark of premature skin aging. The adverse effects of UV radiation are associated with induction of matrix metalloproteinases (MMPs) expression and degradation of collagen and elastin. The present study investigated anti-wrinkle effects of chlorogenic acid (CGA), pyrocatechol (PC) and 3,4,5-tricaffeoyl quinic acid (TCQ), isolated from beans of Coffea arabica, against UV-B stimulated mouse fibroblast cells (CCRF) by measuring expression levels of MMP-1, 3, 9, and type-I procollagen. The three compounds were isolated and purified from coffee grounds using column chromatography and structural examination was evaluated by nuclear magnetic resonance (NMR) analysis. Among the three isolated compounds, CGA effectively suppressed the expression of the MMP-1, 3, and 9 and increased synthesis of type-I procollagen as compared UV-B-stimulated CCRF cells. In addition, CGA dose-dependently inhibited intracellular reactive oxygen species (ROS) production in CCRF cells stimulated by UV radiation. Moreover, CGA displayed a good sun protection factor (SPF) and in vitro DNA damage protection together with inhibition of enzyme xanthine oxidase. The enzyme inhibitory kinetic behavior of CGA was determined by Lineweaver-Burk plot, displayed a mixed type enzyme inhibition with 260.3±4.5µM, Ki value. The results indicate that CGA has potential to be used as a preventive agent against premature skin aging induced by UV radiation.


Assuntos
Coffea/química , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Raios Ultravioleta/efeitos adversos , Animais , Linhagem Celular , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Metaloproteinases da Matriz/metabolismo , Camundongos , Protetores contra Radiação/isolamento & purificação , Protetores contra Radiação/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Xantina Oxidase/metabolismo
14.
Small ; 13(34)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722350

RESUMO

Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze-cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye-sensitized solar cells, short-circuit photocurrent density up to 22.0 mA cm-2 is achieved in the conventional N719 dye-I3- /I- redox electrolyte system even with an intrinsically inferior quasi-solid electrolyte.

15.
Sci Rep ; 7(1): 5396, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710499

RESUMO

The development of a low cost and highly active alternative to the commercial Pt/C catalysts used in the oxygen reduction reaction (ORR) requires a facile and environmentally-friendly synthesis process to facilitate large-scale production and provide an effective replacement. Transition metals, in conjunction with nitrogen-doped carbon, are among the most promising substitute catalysts because of their high activity, inexpensive composition, and high carbon monoxide tolerance. We prepared a polyaniline-derived Fe-N-C catalyst for oxygen reduction using a facile one-pot process with no additional reagents. This process was carried out by ultrasonicating a mixture containing an iron precursor, an aniline monomer, and carbon black. The half-wave potential of the synthesized Fe-N-C catalyst for the ORR was only 10 mV less than that of a commercial Pt/C catalyst. The optimized Fe-N-C catalyst showed outstanding performance in a practical anion exchange membrane fuel cell (AEMFC), suggesting its potential as an alternative to commercial Pt/C catalysts for the ORR.

16.
J Food Sci ; 81(10): C2447-C2456, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27648736

RESUMO

Diospyros kaki (DK) contains an abundance of flavonoids and has been used in folk medicine in Korea for centuries. Here, we report for the first time the anti-inflammatory activities of Quercetin (QCT) and Quercetin 3-O-ß-("2"-galloyl)-glucopyranoside (Q32G) isolated from DK. We have determine the no cytotoxicity of Q32G and QCT against RAW 264.7 cells up to concentration of 50 µM. QCT and Q32G demonstrated potent anti-inflammatory activities by reducing expression of nitric oxide (NO), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 inducible NO synthase (iNOS), cyclooxygenase (COX)-2, and mitogen-activated protein kinase (MAPKs) in mouse RAW 264.7 macrophages activated with lipopolysaccharide (LPS). Both QCT or Q32G could decrease cellular protein levels of COX-2 and iNOS as well as secreted protein levels of NO, PGE2 , and cytokines (TNF-α, IL-1ß, and IL-6) in culture medium of LPS-stimulated RAW 264.7 macrophages. Immunoblot analysis showed that QCT and Q32G suppressed LPS-induced MAP kinase pathway proteins p-p38, ERK, and JNK. This study revealed that QCT and Q32G have anti-inflammatory potential, however Q32G possess comparable activity as that of QCT and could be use as adjuvant to treat inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Diospyros/química , Glicosídeos/farmacologia , Mediadores da Inflamação/metabolismo , Inflamação/metabolismo , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Glicosídeos/isolamento & purificação , Glicosídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Quercetina/análogos & derivados , Quercetina/isolamento & purificação , Quercetina/uso terapêutico , Células RAW 264.7 , República da Coreia
17.
Sci Rep ; 6: 26503, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27210793

RESUMO

We have achieved performance enhancement of polymer electrolyte membrane fuel cell (PEMFC) though crack generation on its electrodes. It is the first attempt to enhance the performance of PEMFC by using cracks which are generally considered as defects. The pre-defined, cracked electrode was generated by stretching a catalyst-coated Nafion membrane. With the strain-stress property of the membrane that is unique in the aspect of plastic deformation, membrane electrolyte assembly (MEA) was successfully incorporated into the fuel cell. Cracked electrodes with the variation of strain were investigated and electrochemically evaluated. Remarkably, mechanical stretching of catalyst-coated Nafion membrane led to a decrease in membrane resistance and an improvement in mass transport, which resulted in enhanced device performance.

18.
Sci Rep ; 6: 18626, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26725652

RESUMO

A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g(-1) at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g(-1) at 2 C, which is close to the best performance of Sn-based nanoscale material so far.

19.
Saudi J Biol Sci ; 22(6): 706-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26586997

RESUMO

In this study, the effect of purified quercetin-3-O-ß-d-glucopyranosyl-(1 â†’ 6)-ß-d-glucopyranosid (QCGG) on melanogenesis was investigated. QCGG was isolated from the calyx of a traditional Korean medicinal herb, Persimmon (Diospyros kaki). The hypopigmentation effects of QCGG were determined by examination of cellular melanin contents, tyrosinase activity assay, cAMP assay, and Western blotting of α-MSH-stimulated B16F10 mouse melanoma cells. Our results showed that QCGG inhibited both melanin synthesis and tyrosinase activity in a concentration-dependent manner as well as significantly reduced the expression of melanogenic proteins such as microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1, tyrosinase-related protein-2, and tyrosinase. Moreover, QCGG inhibited intracellular cAMP levels, cAMP response element-binding protein (CREB), and p38 MAPK expression in α-MSH-stimulated B16F10 cells. Taken together, the suppressive effects of QCGG on melanogenesis may involve down-regulation of MITF and its downstream signaling pathway via phosphorylation of p38 MAPK and CREB along with reduced cAMP levels. These results indicate that QCGG reduced melanin synthesis by reducing expression of tyrosine and tyrosine-related proteins via extracellular signal-related protein kinase (ERK) activation, followed by down-regulation of CREB, p38, and MITF.

20.
ChemSusChem ; 8(14): 2378-84, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26130378

RESUMO

The structural changes and electrochemical behavior of RuO2 are investigated by using in situ XRD, X-ray absorption spectroscopy, and electrochemical techniques to understand the electrochemical reaction mechanism of this metal oxide anode material. Intermediate phase-assisted transformation of RuO2 to LiRuO2 takes place at the start of discharge. Upon further lithiation, LiRuO2 formed by intercalation decomposes to nanosized Ru metal and Li2 O by a conversion reaction. A reversible capacity in addition to its theoretical capacity is observed on discharging below 0.5 V during which no redox activity involving Ru is observed. TEM, X-ray photoelectron spectroscopy, and the galvanostatic intermittent titration technique are used to probe this additional capacity. The results show that the additional capacity is a result of Li storage in the grain boundary between nanosized Ru metal and Li2 O. Findings of this study provide a better understanding of the quantitative share of capacity by a unique combination of intercalation, conversion, and interfacial Li storage in a RuO2 anode.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Compostos de Rutênio/química , Condutividade Elétrica , Eletroquímica , Eletrodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...