Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 190: 108901, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39079334

RESUMO

Upon entering the marine environment, plastics are colonized by a plethora of microorganisms to form a plastisphere, influencing the fate and transport of the plastic debris and the health of marine ecosystems. The assembly of marine plastisphere is generally believed to be dominated by stochastic processes. However, it remains elusive whether microbial interaction in the assembly of plastisphere microbial communities is conserved or not. We analyzed the plastisphere microbiomes of 137 plastic debris samples from intertidal zones at different geographical locations and habitats (seagrass, coral, mangrove, beach, and open ocean) and compared them with the surrounding sediment and seawater microbiomes. Microbial community structures of the plastisphere from different locations were more similar to each other but differed substantially from the surrounding sediment and water microbiomes, implying a common mechanism of plastisphere assembly. We used different machine learning algorithms (Multinomial Logistic Regression, Support Vector Machine, Decision Trees, Random Forest, and Artificial Neural Networks) to classify plastic debris samples with high sensitivity based on the microbiome composition. Eukaryotic and prokaryotic phototrophic organisms such as green algae, diatoms, and cyanobacteria, were found to be enriched on the plastic surfaces. Network analysis revealed the central role of the phototrophic organisms in the formation and sustenance of the plastispheres. We found that phototrophs served as core members interacting strongly with heterotrophic organisms in marine plastisphere, irrespective of the sampling location, habitats, and polymer types. This would explain the stochastic assembly of the plastisphere along with conserved properties driven by the phototrophs in the surrounding environment. Our results highlight the importance of phototrophic organisms in shaping the marine plastisphere microbial communities.

2.
Environ Int ; 179: 108153, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37607427

RESUMO

Coastal habitats have been suggested to serve as a sink for unaccounted plastic debris, i.e., "missing plastic" in the sea, and hence, a hotspot of plastic pollution in the marine and coastal environments. Although the accumulation of plastic debris may pose significant threats to coastal ecosystems, we know little about the fate of these plastic debris and their ecological impacts due to the lack of studies on plastic-microbe interactions in coastal habitats, especially for the tropical marine and coastal environments. In this study, we collected plastic debris from 14 sites consisting of various coastal ecosystems (seagrass meadows, mangrove forests, and beaches), and marine ecosystem (coral reef) around Singapore and characterized the prokaryotic and eukaryotic microbial communities colonized on them. Our results showed that the composition of plastisphere communities in these intertidal ecosystems was predominantly influenced by the sediment than by the plastic materials. Compared with surrounding sediment and seawater, the plastic debris enriched potential plastic degraders, such as Muricauda, Halomonas, and Brevundimonas. The plastic debris was also found to host taxa that play significant roles in biogeochemical cycles (e.g., cyanobacteria, Erythrobacter), hygienically relevant bacteria (e.g., Chryseobacterium, Brevundimonas), and potential pathogens that may negatively impact the health of coastal ecosystems (e.g., Thraustochytriaceae, Labyrinthulaceae, Flavobacterium). Taken together, our study provides valuable insights into the plastic-microbe interactions in tropical coastal and marine ecosystems, highlighting the urgent need for plastisphere studies to understand the fate and ecological impacts of plastic debris accumulated in coastal habitats.


Assuntos
Poluição Ambiental , Microbiota , Plásticos , Água do Mar , Singapura
3.
Environ Int ; 171: 107716, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587499

RESUMO

Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.


Assuntos
Ecossistema , Plásticos , Plásticos/toxicidade , Plásticos/metabolismo , Oceanos e Mares , Projetos de Pesquisa , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA