Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Trop ; 142: 131-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25438260

RESUMO

The increased insecticides resistance by vectors and the ecological harm imposed by insecticides to beneficial organisms drawback mosquitoes chemical control efforts. Biological control would reduce insecticides tolerance and yet biodiversity friend. The predatory and non-predatory effects of Gambusia affinis and Carassius auratus on gravid Anopheles gambiae sensu strict and larvae survivorship were assessed. In determining predation rate, a single starved predator was exposed to third instar larvae of An. gambiae s.s. in different densities 20, 60 and 100. Six replicates in each of the densities for both predators, G. affinis and C. auratus, were set up. The larvae densities were monitored in every 12 and 24 h. In assessing indirect effects: An. gambiae s.s. first instar larvae of three densities 20, 60 and 100 were reared in water from a predator habitat and water from non-predator habitat. Larvae were monitored until they emerged to adults where larval survivorship and sex ratio (Female to total emerged mosquitoes) of the emerged adult from both water habitats were determined. Oviposition preference: twenty gravid females of An. gambiae s.s. were provided with three oviposition choices, one containing water from predator habitat without a predator, the second with water from a predator with a predator and the third with water from non-predatory habitat. The number of eggs laid on each container was counted daily. There were 20 replicates for each predator, G. affinis and C. auratus. Survivorship of An. gambiae s.s. larvae reared in water from non-predator habitat was higher than those reared in water from the predator habitats. Many males emerged in water from non-predatory water habitats while more females emerged from predator's habitats water. More eggs laid in tap water than in water from predator habitat and water from predator habitat with live predator. In 24 h, a starved C. auratus and G. affinis were able to consume 100% of the 3rd instar larvae. The findings from this study suggest that G. affinis and C. auratus may be useful in regulating mosquito populations in favour of beneficial insects. However, a small scale trial shall be needed in complex food chain system to ascertain the observed predation and kairomones effects.


Assuntos
Anopheles/fisiologia , Peixes , Larva/fisiologia , Comportamento Predatório , Animais , Ecossistema , Feminino , Masculino , Controle de Mosquitos
2.
Parasit Vectors ; 7: 211, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885903

RESUMO

BACKGROUND: Mosquito larval control using chemicals and biological agents is of paramount importance in vector population and disease incidence reduction. A commercial synthetic disinfectant soap was evaluated against larvae of Anopheles gambiae s.s. in both laboratory and semi field conditions. METHOD: Five concentrations of commercial synthetic disinfectant soap (0.0001, 0.001, 0.01, 0.1 and 1%) were prepared and evaluated against third instar larvae in laboratory and semi field environments. Mortality was scored at 12, 24, 48, and 72 hrs. Each dosage had 6 replicates, having twenty 3rd instar larvae of An.gambiae s.s. RESULTS: In the laboratory phase, all dosages had significantly higher larval mortalities than in controls, while in semi field conditions, the dosages of 0.0001, 0.001 and 0.01% had lower mortalities than laboratory trials. In the comparison between semi field and laboratory trials, only 0.1 and 1% dosage had significant difference with more mortality in semifield conditions. Proportions of larvae that died during mortality monitoring intervals in laboratory and semi field had significant differences only at 12 hrs and 72 hrs. CONCLUSION: The findings of this study have demonstrated that the mortality of larvae caused by commercial synthetic disinfectant soap is worth further studies in open water bodies. More studies are necessary to find out the effect of sunlight on the chemistry of the synthetic disinfectant and other variables in small scale full field trials.


Assuntos
Anopheles/efeitos dos fármacos , Desinfetantes/farmacologia , Inseticidas/farmacologia , Sabões/farmacologia , Animais , Desinfetantes/administração & dosagem , Relação Dose-Resposta a Droga , Inseticidas/administração & dosagem , Larva/efeitos dos fármacos , Sabões/administração & dosagem , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA