Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(5): 112512, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37200190

RESUMO

Germinal centers (GCs), sites of antibody affinity maturation, are organized into dark (DZ) and light (LZ) zones. Here, we show a B cell-intrinsic role for signal transducer and activator of transcription 3 (STAT3) in GC DZ and LZ organization. Altered zonal organization of STAT3-deficient GCs dampens development of long-lived plasma cells (LL-PCs) but increases memory B cells (MBCs). In an abundant antigenic environment, achieved here by prime-boost immunization, STAT3 is not required for GC initiation, maintenance, or proliferation but is important for sustaining GC zonal organization by regulating GC B cell recycling. Th cell-derived signals drive STAT3 tyrosine 705 and serine 727 phosphorylation in LZ B cells, regulating their recycling into the DZ. RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses identified STAT3 regulated genes that are critical for LZ cell recycling and transiting through DZ proliferation and differentiation phases. Thus, STAT3 signaling in B cells controls GC zone organization and recycling, and GC egress of PCs, but negatively regulates MBC output.


Assuntos
Linfócitos B , Fator de Transcrição STAT3 , Centro Germinativo , Plasmócitos , Transdução de Sinais
2.
J Immunol ; 206(12): 2803-2818, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34039637

RESUMO

MicroRNAs (miRNAs) are involved in healthy B cell responses and the loss of tolerance in systemic lupus erythematosus (SLE), although the role of many miRNAs remains poorly understood. Dampening miR-21 activity was previously shown to reduce splenomegaly and blood urea nitrogen levels in SLE-prone mice, but the detailed cellular responses and mechanism of action remains unexplored. In this study, using the TLR7 agonist, imiquimod-induced SLE model, we observed that loss of miR-21 in Sle1b mice prevented the formation of plasma cells and autoantibody-producing Ab-forming cells (AFCs) without a significant effect on the magnitude of the germinal center (GC) response. We further observed reduced dendritic cell and monocyte numbers in the spleens of miR-21-deficient Sle1b mice that were associated with reduced IFN, proinflammatory cytokines, and effector CD4+ T cell responses. RNA sequencing analysis on B cells from miR-21-deficient Sle1b mice revealed reduced activation and response to IFN, and cytokine and target array analysis revealed modulation of numerous miR-21 target genes in response to TLR7 activation and type I IFN stimulation. Our findings in the B6.Sle1bYaa (Sle1b Yaa) spontaneous model recapitulated the miR-21 role in TLR7-induced responses with an additional role in autoimmune GC and T follicular helper responses. Finally, immunization with T-dependent Ag revealed a role for miR-21 in foreign Ag-driven GC and Ab, but not AFC, responses. Our data suggest a potential multifaceted, context-dependent role for miR-21 in autoimmune and foreign Ag-driven AFC and GC responses. Further study is warranted to delineate the cell-intrinsic requirements and mechanisms of miR-21 during infection and SLE development.


Assuntos
Antígenos/imunologia , Autoimunidade/imunologia , Glicoproteínas de Membrana/imunologia , MicroRNAs/imunologia , Receptor 7 Toll-Like/imunologia , Animais , Formação de Anticorpos/imunologia , Feminino , Masculino , Camundongos , Camundongos Knockout
3.
Immunohorizons ; 5(1): 2-15, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446493

RESUMO

Genome-wide association studies identified variants in the transcription factor STAT4 gene and several other genes in the STAT4 signaling pathway, such as IL12A, IL12B, JAK2, and TYK2, which are associated with an increased risk of developing systemic lupus erythematosus (SLE) and other autoimmune diseases. Consistent with the genome-wide association studies data, STAT4 was shown to play an important role in autoimmune responses and autoimmunity development in SLE mouse models. Despite such important role for STAT4 in SLE development in mice and humans, little is known whether and how STAT4 may regulate extrafollicular Ab-forming cell (AFC) and follicular germinal center (GC) responses, two major pathways of autoreactive B cell development and autoantibody production. To our surprise, we found STAT4 to be largely dispensable for promoting autoimmune AFC and GC responses in various autoimmune- and SLE-prone mouse models, which strongly correlated with autoantibody production, and immune complex deposition and immune cell infiltration in the kidney. We further observed that STAT4 deficiency had no effects on AFC, GC, and Ag-specific Ab responses during protein Ag immunization or influenza virus infection. Additionally, CD4+ effector and follicular Th cell responses in autoimmune- and SLE-prone mice and protein Ag-immunized and influenza virus-infected mice were intact in the absence of STAT4. Together, our data demonstrate a largely dispensable role for STAT4 in AFC, GC, and Ab responses in SLE mouse models and in certain foreign Ag-driven responses.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT4/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Autoimunidade , Modelos Animais de Doenças , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT4/genética
4.
Front Immunol ; 11: 1632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849556

RESUMO

IL-10 producing B cells (B10 cells) play an important immunoregulatory role in various autoimmune and infection conditions. However, the factors that regulate their development and maintenance are incompletely understood. Recently, we and others have established a requirement for TLR7 in promoting autoimmune antibody forming cell (AFC) and germinal center (GC) responses. Here we report an important additional role of TLR7 in the negative regulation of B10 cell development. TLR7 overexpression or overstimulation promoted the reduction of B10 cells whereas TLR7 deficiency rescued these cells in both non-autoimmune and autoimmune-prone mice. TLR7 expression was further inversely correlated with B cell-dependent IL-10 production and its inhibition of CD4 T cell proliferation and IFNγ production in an in vitro B cell and T cell co-culture system. Further, B10 cells displayed elevated TLR7, IFNγR, and STAT1 expression compared to non-B10 cells. Interestingly, deficiency of IFNγR in TLR7 overexpressing lupus-prone mice rescued B10 cells from TLR7-mediated reduction. Finally, B cell intrinsic deletion of IFNγR was sufficient to restore B10 cells in the spleens of TLR7-promoted autoimmune mouse model. In conclusion, our findings demonstrate a novel role for the IFNγR-STAT1 pathway in TLR7-mediated negative regulation of B10 cell development.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Interferon gama/metabolismo , Interleucina-10/biossíntese , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Animais , Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Autoimunidade , Subpopulações de Linfócitos B/imunologia , Biomarcadores , Modelos Animais de Doenças , Imunomodulação/genética , Imunofenotipagem , Interferon gama/genética , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Transgênicos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
5.
Sci Immunol ; 5(46)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276965

RESUMO

Intestinal mononuclear phagocytes (MPs) are composed of heterogeneous dendritic cell (DC) and macrophage subsets necessary for the initiation of immune response and control of inflammation. Although MPs in the normal intestine have been extensively studied, the heterogeneity and function of inflammatory MPs remain poorly defined. We performed phenotypical, transcriptional, and functional analyses of inflammatory MPs in infectious Salmonella colitis and identified CX3CR1+ MPs as the most prevalent inflammatory cell type. CX3CR1+ MPs were further divided into three distinct populations, namely, Nos2 +CX3CR1lo, Ccr7 +CX3CR1int (lymph migratory), and Cxcl13 +CX3CR1hi (mucosa resident), all of which were transcriptionally aligned with macrophages and derived from monocytes. In follow-up experiments in vivo, intestinal CX3CR1+ macrophages were superior to conventional DC1 (cDC1) and cDC2 in inducing Salmonella-specific mucosal IgA. We next examined spatial organization of the immune response induced by CX3CR1+ macrophage subsets and identified mucosa-resident Cxcl13 +CX3CR1hi macrophages as the antigen-presenting cells responsible for recruitment and activation of CD4+ T and B cells to the sites of Salmonella invasion, followed by tertiary lymphoid structure formation and the local pathogen-specific IgA response. Using mice we developed with a floxed Ccr7 allele, we showed that this local IgA response developed independently of migration of the Ccr7 +CX3CR1int population to the mesenteric lymph nodes and contributed to the total mucosal IgA response to infection. The differential activity of intestinal macrophage subsets in promoting mucosal IgA responses should be considered in the development of vaccines to prevent Salmonella infection and in the design of anti-inflammatory therapies aimed at modulating macrophage function in inflammatory bowel disease.


Assuntos
Receptor 1 de Quimiocina CX3C/imunologia , Imunoglobulina A/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Estruturas Linfoides Terciárias/imunologia , Animais , Feminino , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Salmonella enterica/imunologia , Estreptomicina
6.
J Immunol ; 204(10): 2641-2650, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32253245

RESUMO

Although STAT1 tyrosine-701 phosphorylation (designated STAT1-pY701) is indispensable for STAT1 function, the requirement for STAT1 serine-727 phosphorylation (designated STAT1-pS727) during systemic autoimmune and antipathogen responses remains unclear. Using autoimmune-prone B6.Sle1b mice expressing a STAT1-S727A mutant in which serine is replaced by alanine, we report in this study that STAT1-pS727 promotes autoimmune Ab-forming cell (AFC) and germinal center (GC) responses, driving autoantibody production and systemic lupus erythematosus (SLE) development. In contrast, STAT1-pS727 is not required for GC, T follicular helper cell (Tfh), and Ab responses to various foreign Ags, including pathogens. STAT1-pS727 is also not required for gut microbiota and dietary Ag-driven GC and Tfh responses in B6.Sle1b mice. By generating B cell-specific bone marrow chimeras, we demonstrate that STAT1-pS727 plays an important B cell-intrinsic role in promoting autoimmune AFC, GC, and Tfh responses, leading to SLE-associated autoantibody production. Our analysis of the TLR7-accelerated B6.Sle1b.Yaa SLE disease model expressing a STAT1-S727A mutant reveals STAT1-pS727-mediated regulation of autoimmune AFC and GC responses and lupus nephritis development. Together, we identify previously unrecognized differential regulation of systemic autoimmune and antipathogen responses by STAT1-pS727. Our data implicate STAT1-pS727 as a therapeutic target for SLE without overtly affecting STAT1-mediated protection against pathogenic infections.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/sangue , Autoantígenos/imunologia , Autoimunidade , Linfócitos B/transplante , Humanos , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fosforilação , Domínios Proteicos/genética , Fator de Transcrição STAT1/genética , Serina/genética , Ativação Transcricional , Quimeras de Transplante
7.
J Immunol ; 204(4): 796-809, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900342

RESUMO

TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Interferon gama/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Animais , Centro Germinativo/imunologia , Interferon Tipo I , Glicoproteínas de Membrana/imunologia , Camundongos , Receptor 7 Toll-Like/imunologia
8.
Immunohorizons ; 3(10): 463-477, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31594791

RESUMO

Germinal centers (GCs) are essential for the production of somatically hypermutated, class-switched Abs that are protective against infection, but they also form in the absence of purposeful immunization or infection, and are termed spontaneous GCs (Spt-GCs). Although Spt-GCs can arise in nonautoimmune-prone mice, aberrant regulation of Spt-GCs in autoimmune-prone mice is strongly associated with the development of autoimmune diseases like systemic lupus erythematosus. The formation of Spt-GCs is crucially driven by TLR7-mediated RNA sensing. However, the impact of MAVS-dependent, Rig-like receptor-mediated RNA sensing on the Spt-GC response remains unknown. In this study, we assessed the Spt-GC response and splenic B cell development in two MAVS-deficient mice with distinct genetic backgrounds. Importantly, we found that MAVS differentially controls Spt-GC responses and B cell development, depending on genetic background. B6/129 mixed background MAVSKO mice had nearly absent Spt-GC responses in the spleen and cervical lymph nodes, which were associated with impaired splenic B cell development, in addition to impaired B cell activation and TLR7 expression. Interestingly, treatment of mice with TLR7 agonist could partially rescue GC responses by overcoming follicular B cell activation deficits. Contrastingly, the absence of MAVS on a B6 background resulted in normal B cell development and Spt-GC formation. Our results highlight important differences in the contribution of MAVS to B cell development and Spt-GC function, depending on the genetic background, warranting greater regard for the impact of genetic background in further studies using these mice for the study of autoimmunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Patrimônio Genético , Imiquimode/farmacologia , Glicoproteínas de Membrana/imunologia , Camundongos Knockout , Especificidade da Espécie , Baço/citologia , Receptor 7 Toll-Like/imunologia
9.
J Transl Med ; 16(1): 279, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305097

RESUMO

BACKGROUND: The clinical trials conducted at Chingleput India suggest that BCG fails to protect against tuberculosis (TB) in TB-endemic population. Recent studies advocate that non-tuberculous mycobacteria and latent Mycobacterium tuberculosis (Mtb) infection interferes in the antigen processing and presentation of BCG in inducing protective immunity against Mtb. Thereby, indicating that any vaccine that require extensive antigen processing may not be efficacious in TB-endemic zones. Recently, we have demonstrated that the vaccine candidate L91, which is composed of lipidated promiscuous MHC-II binder epitope, derived from latency associated Acr1 antigen of Mtb is immunogenic in the murine and Guinea pig models of TB and conferred better protection than BCG against Mtb. METHODS: In this study, we have used a multi-stage based bi-epitope vaccine, namely L4.8, comprising of MHC-I and MHC-II binding peptides of active (TB10.4) and latent (Acr1) stages of Mtb antigens, respectively. These peptides were conjugated to the TLR-2 agonist Pam2Cys. RESULTS: L4.8 significantly elicited both CD8 T cells and CD4 T cells immunity, as evidenced by increase in the enduring polyfunctional CD8 T cells and CD4 T cells. L4.8 efficiently declined Mtb-burden and protected animals better than BCG and L91, even at the late stage of Mtb infection. CONCLUSIONS: The BCG-L4.8 prime boost strategy imparts a better protection against TB than the BCG alone. This study emphatically denotes that L4.8 can be a promising future vaccine candidate for controlling active and latent TB.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Lipídeos/química , Mycobacterium tuberculosis/imunologia , Animais , Feminino , Imunidade , Imunização , Memória Imunológica , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos BALB C , Linfócitos T Citotóxicos/imunologia , Tuberculose/imunologia
10.
Cell Rep ; 24(2): 406-418, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996101

RESUMO

Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset.


Assuntos
Linfócitos B/imunologia , Tolerância Imunológica , Interferon Tipo I/metabolismo , Transdução de Sinais , Animais , Anticorpos Antinucleares/metabolismo , Afinidade de Anticorpos , Formação de Anticorpos , Antígenos/metabolismo , Autoanticorpos/biossíntese , DNA/metabolismo , Feminino , Centro Germinativo/metabolismo , Imunização , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/metabolismo , Transcriptoma/genética
11.
Nat Immunol ; 19(6): 571-582, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29760532

RESUMO

The transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo. Moreover, disease progression in mouse systemic lupus erythematosus (SLE) correlated with strength of the AhR signal, and the disease course could be altered by modulation of AhR activity. Deletion of AhR in the myeloid lineage caused systemic autoimmunity in mice, and an enhanced AhR transcriptional signature correlated with disease in patients with SLE. Thus, AhR activity induced by apoptotic cell phagocytes maintains peripheral tolerance.


Assuntos
Apoptose/imunologia , Tolerância Imunológica/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Macrófagos/imunologia , Receptores de Hidrocarboneto Arílico/imunologia , Animais , Humanos , Camundongos , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia
12.
Immunol Cell Biol ; 96(3): 298-315, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29345385

RESUMO

Mer Tyrosine Kinase receptor (Mer) is involved in anti-inflammatory efferocytosis. Here we report elevated spontaneous germinal center (Spt-GC) responses in Mer-deficient mice (Mer-/- ) that are associated with the loss of SIGN-R1+ marginal zone macrophages (MZMs). The dissipation of MZMs in Mer-/- mice occurs independently of reduced cellularity or delocalization of marginal zone B cells, sinusoidal cells or of CD169+ metallophillic macrophages. We find that MZM dissipation in Mer-/- mice contributes to apoptotic cell (AC) accumulation in Spt-GCs and dysregulation of the GC checkpoint, allowing an expansion of DNA-reactive B cells in GCs. We further observe that bone marrow derived macrophages from Mer-/- mice produce more TNFα, and are susceptible to cell death upon exposure to ACs compared to WT macrophages. Anti-TNFα Ab treatment of Mer-/- mice is, however, unable to reverse MZM loss, but results in reduced Spt-GC responses, indicating that TNFα promotes Spt-GC responses in Mer-/- mice. Contrary to an anti-TNFα Ab treatment, treatment of Mer-/- mice with a synthetic agonist for the transcription factor LXRα rescues a significant number of MZMs in vivo. Our data suggest that Mer-LXRα signaling plays an important role in the differentiation and maintenance of MZMs, which in turn regulate Spt-GC responses and tolerance.


Assuntos
Moléculas de Adesão Celular/metabolismo , Centro Germinativo/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , c-Mer Tirosina Quinase/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linfócitos B/metabolismo , Benzoatos/farmacologia , Benzilaminas/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptores X do Fígado/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos Knockout , Linfócitos T/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , c-Mer Tirosina Quinase/deficiência
13.
Hepatology ; 67(4): 1408-1419, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28921595

RESUMO

We have reported on a murine model of autoimmune cholangitis, generated by altering the AU-rich element (ARE) by deletion of the interferon gamma (IFN-γ) 3' untranslated region (coined ARE-Del-/- ), that has striking similarities to human primary biliary cholangitis (PBC) with female predominance. Previously, we suggested that the sex bias of autoimmune cholangitis was secondary to intense and sustained type I and II IFN signaling. Based on this thesis, and to define the mechanisms that lead to portal inflammation, we specifically addressed the hypothesis that type I IFNs are the driver of this disease. To accomplish these goals, we crossed ARE-Del-/- mice with IFN type I receptor alpha chain (Ifnar1) knockout mice. We report herein that loss of type I IFN receptor signaling in the double construct of ARE-Del-/- Ifnar1-/- mice dramatically reduces liver pathology and abrogated sex bias. More importantly, female ARE-Del-/- mice have an increased number of germinal center (GC) B cells as well as abnormal follicular formation, sites which have been implicated in loss of tolerance. Deletion of type I IFN signaling in ARE-Del-/- Ifnar1-/- mice corrects these GC abnormalities, including abnormal follicular structure. CONCLUSION: Our data implicate type I IFN signaling as a necessary component of the sex bias of this murine model of autoimmune cholangitis. Importantly these data suggest that drugs that target the type I IFN signaling pathway would have potential benefit in the earlier stages of PBC. (Hepatology 2018;67:1408-1419).


Assuntos
Doenças Autoimunes/imunologia , Colangite/imunologia , Interferon Tipo I/genética , Fígado/patologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fatores Sexuais , Transdução de Sinais/imunologia
14.
J Transl Med ; 15(1): 201, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28985739

RESUMO

BACKGROUND: The current BCG vaccine induces only short-term protection against Mycobacterium tuberculosis (Mtb), suggesting its failure to generate long-lasting memory T cells. Previously, we have demonstrated that a self-adjuvanting peptide of Mtb (L91), successfully generated enduring memory Th1 cells. Consequently, we investigated if L91 was able to recuperate BCG potency in perpetuating the generation of memory T cells and protection against Mtb infected mice. METHODS: In the present study, we evaluated the potency of a self adjuvanting Mtb peptide vaccine L91 in invigorating BCG immune response against Mtb in mice. Female BALB/c mice were immunized with BCG. Later, they were boosted twice with L91 or an antigenically irrelevant lipidated influenza virus hemagglutinin peptide (LH). Further, PBMCs obtained from BCG vaccinated healthy subjects were cultured in vitro with L91. T cell responses were determined by surface markers and intracellular cytokine staining. Secretion of cytokines was estimated in the culture supernatants (SNs) by ELISA. RESULTS: Compared to the BCG-vaccinated controls, L91 booster significantly enhanced the percentage of memory Th1 cells and Th17 cells and reduced the mycobacterial burden in BCG primed and L91-boosted (BCG-L91) group, even after 229 days of BCG vaccination. Further, substantial augmentation in the central (CD44hiCD62LhiCD127hi) and effector memory (CD44hiCD62LloCD127lo) CD4 T cells was detected. Furthermore, greater frequency of polyfunctional Th1 cells (IFN-γ+TNF-α+) and Th17 cells (IFN-γ+IL-17A+) was observed. Importantly, BCG-L91 successfully prevented CD4 T cells from exhaustion by decreasing the expression of PD-1 and Tim-3. Additionally, augmentation in the frequency of Th1 cells, Th17 cells and memory CD4 T cells was observed in the PBMCs of the BCG-vaccinated healthy individuals following in vitro stimulation with L91. CONCLUSIONS: Our study demonstrated that L91 robustly reinvigorate BCG potency to invoke enduring protection against Mtb. This novel vaccination stratagem involving BCG-priming followed by L91-boosting can be a future prophylactic measure to control TB.


Assuntos
Vacina BCG/imunologia , Imunidade , Memória Imunológica , Lipídeos/química , Mycobacterium tuberculosis/imunologia , Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imunidade/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fenótipo , Receptores de Quimiocinas/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia
15.
Autoimmunity ; 50(5): 317-328, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28686480

RESUMO

Multiple sclerosis (MS) is a highly detrimental autoimmune disease of the central nervous system. There is no cure for it but the treatment typically focuses on subsiding severity and recurrence of the disease. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS. It is characterized by frequent relapses due to the generation of memory T cells. Caerulomycin A (CaeA) is known to suppress the Th1 cells, Th2 cells, and Th17 cells. Interestingly, it enhances the generation of regulatory T cells (Tregs). Th1 cells and Th17 cells are known to aggravate EAE, whereas Tregs suppress the disease symptoms. Consequently, in the current study we evaluated the influence of CaeA on EAE. Intriguingly, we observed by whole body imaging that CaeA regressed the clinical symptoms of EAE. Further, there was reduction in the pool of Th1 cells, Th17 cells, and CD8 T cells. The mechanism involved in suppressing the EAE symptoms was due to the inhibition in the generation of effector and central memory T cells and induction of the expansion of Tregs. In essence, these findings implicate that CaeA may be considered as a potent future immunosuppressive drug.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/diagnóstico , Encefalomielite Autoimune Experimental/imunologia , Imunossupressores/farmacologia , Piridinas/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Biomarcadores , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Memória Imunológica , Imunofenotipagem , Camundongos , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Fenótipo , Subpopulações de Linfócitos T , Linfócitos T/citologia , Linfócitos T/metabolismo
16.
Sci Rep ; 6: 23917, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052185

RESUMO

Regardless of the fact that potent drug-regimen is currently available, tuberculosis continues to kill 1.5 million people annually. Tuberculosis patients are not only inflicted by the trauma of disease but they also suffer from the harmful side-effects, immune suppression and drug resistance instigated by prolonged therapy. It is an exigency to introduce radical changes in the existing drug-regime and discover safer and better therapeutic measures. Hence, we designed a novel therapeutic strategy by reinforcing the efficacy of drugs to kill Mtb by concurrently boosting host immunity by L91. L91 is chimera of promiscuous epitope of Acr1 antigen of Mtb and TLR-2 agonist Pam2Cys. The adjunct therapy using drugs and L91 (D-L91) significantly declined the bacterial load in Mtb infected animals. The mechanism involved was through enhancement of IFN-γ(+)TNF-α(+) polyfunctional Th1 cells and IL-17A(+)IFN-γ(+) Th17 cells, enduring memory CD4 T cells and downregulation of PD-1. The down-regulation of PD-1 prevents CD4 T cells from undergoing exhaustion and improves their function against Mtb. Importantly, the immune response observed in animals could be replicated using T cells of tuberculosis patients on drug therapy. In future, D-L91 therapy can invigorate drugs potency to treat tuberculosis patients and reduce the dose and duration of drug-regime.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/tratamento farmacológico , Animais , Carga Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Epitopos/imunologia , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Lipopeptídeos/química , Camundongos , Mycobacterium tuberculosis/imunologia , Peptídeos/química , Peptídeos/farmacologia , Tuberculose/imunologia , Fator de Necrose Tumoral alfa/metabolismo
17.
J Exp Med ; 213(5): 715-32, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27069112

RESUMO

Spontaneously developed germinal centers (GCs [Spt-GCs]) harbor autoreactive B cells that generate somatically mutated and class-switched pathogenic autoantibodies (auto-Abs) to promote autoimmunity. However, the mechanisms that regulate Spt-GC development are not clear. In this study, we report that B cell-intrinsic IFN-γ receptor (IFN-γR) and STAT1 signaling are required for Spt-GC and follicular T helper cell (Tfh cell) development. We further demonstrate that IFN-γR and STAT1 signaling control Spt-GC and Tfh cell formation by driving T-bet expression and IFN-γ production by B cells. Global or B cell-specific IFN-γR deficiency in autoimmune B6.Sle1b mice leads to significantly reduced Spt-GC and Tfh cell responses, resulting in diminished antinuclear Ab reactivity and IgG2c and IgG2b auto-Ab titers compared with B6.Sle1b mice. Additionally, we observed that the proliferation and differentiation of DNA-reactive B cells into a GC B cell phenotype require B cell-intrinsic IFN-γR signaling, suggesting that IFN-γR signaling regulates GC B cell tolerance to nuclear self-antigens. The IFN-γR deficiency, however, does not affect GC, Tfh cell, or Ab responses against T cell-dependent foreign antigens, indicating that IFN-γR signaling regulates autoimmune, but not the foreign antigen-driven, GC and Tfh cell responses. Together, our data define a novel B cell-intrinsic IFN-γR signaling pathway specific to Spt-GC development and autoimmunity. This novel pathway can be targeted for future pharmacological intervention to treat systemic lupus erythematosus.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptores de Interferon/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos B/patologia , Centro Germinativo/patologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia , Receptor de Interferon gama
18.
Proteins ; 83(10): 1813-22, 2015 10.
Artigo em Inglês | MEDLINE | ID: mdl-26214268

RESUMO

Although unglycosylated HuEpo is fully functional, it has very short serum half-life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease-sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half-life measurements. Our results identify α3-α4 inter-helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously-reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans.


Assuntos
Eritropoetina/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Catepsina L/metabolismo , Linhagem Celular Tumoral , Eritropoetina/metabolismo , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo
19.
J Immunol ; 194(9): 4130-43, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801429

RESUMO

Signaling lymphocyte activation molecules (SLAMs) play an integral role in immune regulation. Polymorphisms in the SLAM family receptors are implicated in human and mouse model of lupus disease. The lupus-associated, somatically mutated, and class-switched pathogenic autoantibodies are generated in spontaneously developed germinal centers (GCs) in secondary lymphoid organs. The role and mechanism of B cell-intrinsic expression of polymorphic SLAM receptors that affect B cell tolerance at the GC checkpoint are not clear. In this study, we generated several bacterial artificial chromosome-transgenic mice that overexpress C57BL/6 (B6) alleles of different SLAM family genes on an autoimmune-prone B6.Sle1b background. B6.Sle1b mice overexpressing B6-derived Ly108 and CD84 exhibit a significant reduction in the spontaneously developed GC response and autoantibody production compared with B6.Sle1b mice. These data suggest a prominent role for Sle1b-derived Ly108 and CD84 in altering the GC checkpoint. We further confirm that expression of lupus-associated CD84 and Ly108 specifically on GC B cells in B6.Sle1b mice is sufficient to break B cell tolerance, leading to an increase in autoantibody production. In addition, we observe that B6.Sle1b B cells have reduced BCR signaling and a lower frequency of B cell-T cell conjugates; the reverse is seen in B6.Sle1b mice overexpressing B6 alleles of CD84 and Ly108. Finally, we find a significant decrease in apoptotic GC B cells in B6.Sle1b mice compared with B6 controls. Our study establishes a central role for GC B cell-specific CD84 and Ly108 expression in maintaining B cell tolerance in GCs and in preventing autoimmunity.


Assuntos
Antígenos CD/imunologia , Antígenos Ly/imunologia , Linfócitos B/imunologia , Centro Germinativo/imunologia , Tolerância Imunológica/imunologia , Animais , Antígenos CD/genética , Antígenos Ly/genética , Feminino , Centro Germinativo/citologia , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Família de Moléculas de Sinalização da Ativação Linfocitária
20.
J Infect Dis ; 211(3): 486-96, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25156558

RESUMO

Chronic infections result in T-cell exhaustion, a state of functional unresponsiveness. To control the infection, it is important to salvage the exhausted T cells. In this study, we delivered signals through Toll-like receptor 2 (TLR-2) to reinvigorate functionality in chronically activated T-helper type 1 (Th1) cells. This process significantly augmented the expression of T-bet, interferon γ, interleukin 2, and the antiapoptotic molecule Bcl-2, whereas it dampened the display of the exhaustion markers programmed death receptor 1 (PD-1) and lymphocyte activation gene 3 (Lag-3). Additionally, TLR-2 signaling bolstered the ability of chronically stimulated Th1 cells to activate B cells. Finally, the results were substantiated by observing reduced lung pathology upon administration of TLR-2 agonist in the chronic infection model of tuberculosis. These data demonstrated the importance of TLR-2 in rescuing chronically activated Th1 cells from undergoing exhaustion. This study will pave a way for targeting TLR-2 in developing therapeutic strategies to treat chronic diseases involving loss of Th1 cell function.


Assuntos
Células Th1/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Antígenos CD/imunologia , Feminino , Interferon gama/imunologia , Interleucina-2/imunologia , Pulmão/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Receptor de Morte Celular Programada 1/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Transdução de Sinais/imunologia , Tuberculose Pulmonar/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...