Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Biol Sex Differ ; 6: 25, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579217

RESUMO

BACKGROUND: Neuroimaging studies in younger adults have demonstrated sex differences in brain processing of painful experimental stimuli. Such differences may contribute to findings that women suffer disproportionately from pain. It is not known whether sex-related differences in pain processing extend to older adults. METHODS: This cross-sectional study investigated sex differences in pain reports and brain response to pain in 12 cognitively healthy older female adults and 12 cognitively healthy age-matched older male adults (age range 65-81, median = 67). Participants underwent psychophysical assessments of thermal pain responses, functional MRI, and psychosocial assessment. RESULTS: When compared to older males, older females reported experiencing mild and moderate pain at lower stimulus intensities (i.e., exhibited greater pain sensitivity; Cohen's d = 0.92 and 0.99, respectively, p < 0.01) yet did not report greater pain-associated unpleasantness. Imaging results indicated that, despite the lower stimulus intensities required to elicit mild pain detection in females, they exhibited less deactivations than males in regions associated with the default mode network (DMN) and in regions associated with pain affect (bilateral dorsolateral prefrontal cortex, somatomotor area, rostral anterior cingulate cortex (rACC), and dorsal ACC). Conversely, at moderate pain detection levels, males exhibited greater activation than females in several ipsilateral regions typically associated with pain sensation (e.g., primary (SI) and secondary somatosensory cortices (SII) and posterior insula). Sex differences were found in the association of brain activation in the left rACC with pain unpleasantness. In the combined sample of males and females, brain activation in the right secondary somatosensory cortex was associated with pain unpleasantness. CONCLUSIONS: Cognitively healthy older adults in the sixth and seventh decades of life exhibit similar sex differences in pain sensitivity compared to those reported in younger individuals. However, older females did not find pain to be more unpleasant. Notably, increased sensitivity to mild pain in older females was reflected via less brain deactivation in regions associated with both the DMN and in pain affect. Current findings elevate the rACC as a key region associated with sex differences in reports of pain unpleasantness and brain deactivation in older adults. Also, pain affect may be encoded in SII in both older males and females.

3.
Magn Reson Imaging ; 28(9): 1283-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20573464

RESUMO

Arterial spin labeling (ASL) magnetic resonance imaging (MRI) is becoming a popular method for measuring perfusion due to its ability of generating perfusion maps noninvasively. This allows for frequent repeat scanning, which is especially useful for follow-up studies. However, limited information is available regarding the reliability and reproducibility of ASL perfusion measurements. Here, the reliability and reproducibility of pulsed ASL was investigated in an elderly population to determine the variation in perfusion among cognitively normal individuals in different brain structures. Intraclass correlation coefficients (ICC) and within-subject variation coefficients (wsCV) were used to estimate reliability and reproducibility over a period of 1 year. Twelve cognitively normal subjects (75.5 ± 5.3 years old, six male and six female) were scanned four times (at 0, 3, 6 and 12 months). No significant difference in cerebral blood flow (CBF) was found over this period. CBF values ranged from 46 to 53 ml/100 g per minute in the medial frontal gyrus (MFG) and from 40 to 44 ml/100 g per minute over all gray matter regions in the superior part of the brain. Data obtained from the first two scans were processed by two readers and showed high reliability (ICC >0.97) and reproducibility (wsCV <6%). However, over the total period of 1 year, reliability reduced to a moderate level (ICC=0.63-0.74) with wsCVs of gray matter, left MFG, right MFG of 13.5%, 12.3%, and 15.4%, respectively. In conclusion, measurement of CBF with pulsed ASL provided good agreement between inter-raters. A moderate level of reliability was obtained over a 1-year period, which was attributed to variance in slice positioning and coregistration. As such pulsed ASL has the potential to be used for CBF comparison in longitudinal studies.


Assuntos
Cognição/fisiologia , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Encéfalo/patologia , Mapeamento Encefálico/métodos , Circulação Cerebrovascular , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Perfusão , Reprodutibilidade dos Testes
4.
NMR Biomed ; 23(2): 207-17, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19924726

RESUMO

Damage to specific white matter tracts within the spinal cord can often result in the particular neurological syndromes that characterize myelopathies such as traumatic spinal cord injury. Noninvasive visualization of these tracts with imaging techniques that are sensitive to microstructural integrity is an important clinical goal. Diffusion tensor imaging (DTI)- and magnetization transfer (MT)-derived quantities have shown promise in assessing tissue health in the central nervous system. In this paper, we demonstrate that DTI of the cervical spinal cord can reliably discriminate sensory (dorsal) and motor (lateral) columns. From data derived from nine healthy volunteers, two raters quantified column-specific parallel (lambda(||)) and perpendicular (lambda(perpendicular)) diffusivity, fractional anisotropy (FA), mean diffusivity (MD), and MT-weighted signal intensity relative to cerebrospinal fluid (MTCSF) over two time-points separated by more than 1 week. Cross-sectional means and standard deviations of these measures in the lateral and dorsal columns were as follows: lambda(||): 2.13 +/- 0.14 and 2.14 +/- 0.11 microm(2)/ms; lambda(perpendicular): 0.67 +/- 0.16 and 0.61 +/- 0.09 microm(2)/ms; MD: 1.15 +/- 0.15 and 1.12 +/- 0.08 microm(2)/ms; FA: 0.68 +/- 0.06 and 0.68 +/- 0.05; MTCSF: 0.52 +/- 0.05 and 0.50 +/- 0.05. We examined the variability and interrater and test-retest reliability for each metric. These column-specific MR measurements are expected to enhance understanding of the intimate structure-function relationship in the cervical spinal cord and may be useful for the assessment of disease progression.


Assuntos
Vértebras Cervicais/fisiologia , Imagem de Tensor de Difusão/métodos , Magnetismo , Medula Espinal/fisiologia , Adulto , Líquido Cefalorraquidiano/metabolismo , Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Reprodutibilidade dos Testes , Fatores de Tempo , Adulto Jovem
5.
Neuroimage ; 46(4): 1041-54, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19286465

RESUMO

Independent component analysis (ICA) decomposes fMRI data into spatially independent maps and their corresponding time courses. However, distinguishing the neurobiologically and biophysically reasonable components from those representing noise and artifacts is not trivial. We present a simple method for the ranking of independent components, by assessing the resemblance between components estimated from all the data, and components estimated from only the odd- (or even-) numbered time points. We show that the meaningful independent components of fMRI data resemble independent components estimated from downsampled data, and thus tend to be highly ranked by the method.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética , Análise de Componente Principal , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino
6.
Brain ; 132(Pt 5): 1200-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19297508

RESUMO

The human spinal cord contains segregated sensory and motor pathways that have been difficult to quantify using conventional magnetic resonance imaging (MRI) techniques. Multiple sclerosis is characterized by both focal and spatially diffuse spinal cord lesions with heterogeneous pathologies that have limited attempts at linking MRI and behaviour. We used a novel magnetization-transfer-weighted imaging approach to quantify damage to spinal white matter columns and tested its association with sensorimotor impairment. We studied 42 participants with multiple sclerosis who each underwent MRI at 3 Tesla and quantitative tests of sensorimotor function. We measured cerebrospinal-fluid-normalized magnetization-transfer signals in the dorsal and lateral columns and grey matter of the cervical cord. We also measured brain lesion volume, cervical spinal cord lesion number and cross-sectional area, vibration sensation, strength, walking velocity and standing balance. We used linear regression to assess the relationship between sensorimotor impairment and MRI abnormalities. We found that the dorsal column cerebrospinal-fluid-normalized magnetization-transfer signal specifically correlated with vibration sensation (R = 0.58, P < 0.001) and the lateral column signal with strength (R = -0.45, P = 0.003). Spinal cord signal measures also correlated with walking and balance dysfunction. A stepwise multiple regression showed that the dorsal column signal and diagnosis subtype alone explained a significant portion of the variance in sensation (R(2) = 0.54, P < 0.001), whereas the lateral column signal and diagnosis subtype explained a significant portion of the variance in strength (R(2) = 0.30, P < 0.001). These results help to understand the anatomic basis of sensorimotor disability in multiple sclerosis and have implications for testing the effects of neuroprotective and reparative interventions.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Medula Espinal/patologia , Adulto , Análise de Variância , Tornozelo , Encéfalo/patologia , Estudos de Casos e Controles , Vértebras Cervicais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Força Muscular , Análise de Regressão , Transtornos de Sensação/patologia , Transtornos de Sensação/fisiopatologia , Limiar Sensorial , Medula Espinal/fisiopatologia , Dedos do Pé , Vibração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...