Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 19(6): 3830-3837, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31059272

RESUMO

Considerable advances in manipulating heat flow in solids have been made through the innovation of artificial thermal structures such as thermal diodes, camouflages, and cloaks. Such thermal devices can be readily constructed only at the macroscale by mechanically assembling different materials with distinct values of thermal conductivity. Here, we extend these concepts to the microscale by demonstrating a monolithic material structure on which nearly arbitrary microscale thermal metamaterial patterns can be written and programmed. It is based on a single, suspended silicon membrane whose thermal conductivity is locally, continuously, and reversibly engineered over a wide range (between 2 and 65 W/m·K) and with fine spatial resolution (10-100 nm) by focused ion irradiation. Our thermal cloak demonstration shows how ion-write microthermotics can be used as a lithography-free platform to create thermal metamaterials that control heat flow at the microscale.

2.
Adv Mater ; 30(30): e1800754, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29893020

RESUMO

2D layered materials have emerged in recent years as a new platform to host novel electronic, optical, or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Black phosphorus, for example, is a 2D material that has such in-plane anisotropy. Here, a rare chemical form of arsenic, called black-arsenic (b-As), is reported as a cousin of black phosphorus, as an extremely anisotropic layered semiconductor. Systematic characterization of the structural, electronic, thermal, and electrical properties of b-As single crystals is performed, with particular focus on its anisotropies along two in-plane principle axes, armchair (AC) and zigzag (ZZ). The analysis shows that b-As exhibits higher or comparable electronic, thermal, and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in-plane anisotropies can potentially implement novel ideas for scientific research and device applications.

3.
Small ; 14(14): e1703621, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29479803

RESUMO

Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

4.
Nano Lett ; 18(3): 1637-1643, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400972

RESUMO

Along with the rapid development of hybrid electronic-photonic systems, multifunctional devices with dynamic responses have been widely investigated for improving many optoelectronic applications. For years, microelectro-opto-mechanical systems (MEOMS), one of the major approaches to realizing multifunctionality, have demonstrated profound reconfigurability and great reliability. However, modern MEOMS still suffer from limitations in modulation depth, actuation voltage, or miniaturization. Here, we demonstrate a new MEOMS multifunctional platform with greater than 50% optical modulation depth over a broad wavelength range. This platform is realized by a specially designed cantilever array, with each cantilever consisting of vanadium dioxide, chromium, and gold nanolayers. The abrupt structural phase transition of the embedded vanadium dioxide enables the reconfigurability of the platform. Diverse stimuli, such as temperature variation or electric current, can be utilized to control the platform, promising CMOS-compatible operating voltage. Multiple functionalities, including an active enhanced absorber and a reprogrammable electro-optic logic gate, are experimentally demonstrated to address the versatile applications of the MEOMS platform in fields such as communication, energy harvesting, and optical computing.

5.
Sci Rep ; 7(1): 7131, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769057

RESUMO

Efficient thermal management at the nanoscale is important for reducing energy consumption and dissipation in electronic devices, lab-on-a-chip platforms and energy harvest/conversion systems. For many of these applications, it is much desired to have a solid-state structure that reversibly switches thermal conduction with high ON/OFF ratios and at high speed. Here we describe design and implementation of a novel, all-solid-state thermal switching device by nanostructured phase transformation, i.e., modulation of contact pressure and area between two poly-silicon surfaces activated by microstructural change of a vanadium dioxide (VO2) thin film. Our solid-state devices demonstrate large and reversible alteration of cross-plane thermal conductance as a function of temperature, achieving a conductance ratio of at least 2.5. Our new approach using nanostructured phase transformation provides new opportunities for applications that require advanced temperature and heat regulations.

6.
Nano Lett ; 17(8): 4982-4988, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28657751

RESUMO

van der Waals (vdW) forces, despite being relatively weak, hold the layers together in transition metal dichalcogenides (TMDs) and play a key role in their band structure evolution, hence profoundly affecting their physical properties. In this work, we experimentally probe the vdW interactions in MoS2 and other TMDs by measuring the valence band maximum (VBM) splitting (Δ) at K point as a function of pressure in a diamond anvil cell. As high pressure increases interlayer wave function coupling, the VBM splitting is enhanced in 2H-stacked MoS2 multilayers but, due to its specific geometry, not in 3R-stacked multilayers, hence allowing the interlayer contribution to be separated out of the total VBM splitting, as well as predicting a negative pressure (2.4 GPa) where the interlayer contribution vanishes. This negative pressure represents the threshold vdW interaction beyond which neighboring layers are electronically decoupled. This approach is compared to first-principles calculations and found to be widely applicable to other group-VI TMDs.

7.
Adv Mater ; 28(15): 2923-30, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26894866

RESUMO

Ferroelectrically driven nonvolatile memory is demonstrated by interfacing 2D semiconductors and ferroelectric thin films, exhibiting superior memory performance comparable to existing thin-film ferroelectric field-effect transistors. An optical memory effect is also observed with large modulation of photoluminescence tuned by the ferroelectric gating, potentially finding applications in optoelectronics and valleytronics.

8.
Nat Nanotechnol ; 7(3): 174-9, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179566

RESUMO

The ability to make electrical measurements inside cells has led to many important advances in electrophysiology. The patch clamp technique, in which a glass micropipette filled with electrolyte is inserted into a cell, offers both high signal-to-noise ratio and temporal resolution. Ideally, the micropipette should be as small as possible to increase the spatial resolution and reduce the invasiveness of the measurement, but the overall performance of the technique depends on the impedance of the interface between the micropipette and the cell interior, which limits how small the micropipette can be. Techniques that involve inserting metal or carbon microelectrodes into cells are subject to similar constraints. Field-effect transistors (FETs) can also record electric potentials inside cells, and because their performance does not depend on impedance, they can be made much smaller than micropipettes and microelectrodes. Moreover, FET arrays are better suited for multiplexed measurements. Previously, we have demonstrated FET-based intracellular recording with kinked nanowire structures, but the kink configuration and device design places limits on the probe size and the potential for multiplexing. Here, we report a new approach in which a SiO2 nanotube is synthetically integrated on top of a nanoscale FET. This nanotube penetrates the cell membrane, bringing the cell cytosol into contact with the FET, which is then able to record the intracellular transmembrane potential. Simulations show that the bandwidth of this branched intracellular nanotube FET (BIT-FET) is high enough for it to record fast action potentials even when the nanotube diameter is decreased to 3 nm, a length scale well below that accessible with other methods. Studies of cardiomyocyte cells demonstrate that when phospholipid-modified BIT-FETs are brought close to cells, the nanotubes can spontaneously penetrate the cell membrane to allow the full-amplitude intracellular action potential to be recorded, thus showing that a stable and tight seal forms between the nanotube and cell membrane. We also show that multiple BIT-FETs can record multiplexed intracellular signals from both single cells and networks of cells.


Assuntos
Potenciais de Ação/fisiologia , Citosol/fisiologia , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Nanotubos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Animais , Membrana Celular/fisiologia , Galinhas , Simulação por Computador , Germânio/química , Miócitos Cardíacos/fisiologia , Dióxido de Silício/química , Transistores Eletrônicos
9.
Nature ; 470(7333): 240-4, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21307937

RESUMO

A nanoprocessor constructed from intrinsically nanometre-scale building blocks is an essential component for controlling memory, nanosensors and other functions proposed for nanosystems assembled from the bottom up. Important steps towards this goal over the past fifteen years include the realization of simple logic gates with individually assembled semiconductor nanowires and carbon nanotubes, but with only 16 devices or fewer and a single function for each circuit. Recently, logic circuits also have been demonstrated that use two or three elements of a one-dimensional memristor array, although such passive devices without gain are difficult to cascade. These circuits fall short of the requirements for a scalable, multifunctional nanoprocessor owing to challenges in materials, assembly and architecture on the nanoscale. Here we describe the design, fabrication and use of programmable and scalable logic tiles for nanoprocessors that surmount these hurdles. The tiles were built from programmable, non-volatile nanowire transistor arrays. Ge/Si core/shell nanowires coupled to designed dielectric shells yielded single-nanowire, non-volatile field-effect transistors (FETs) with uniform, programmable threshold voltages and the capability to drive cascaded elements. We developed an architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ∼960 µm(2). The logic tile was programmed and operated first as a full adder with a maximal voltage gain of ten and input-output voltage matching. Then we showed that the same logic tile can be reprogrammed and used to demonstrate full-subtractor, multiplexer, demultiplexer and clocked D-latch functions. These results represent a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.


Assuntos
Eletrônica/instrumentação , Eletrônica/métodos , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Nanofios/química , Transistores Eletrônicos , Metodologias Computacionais , Germânio , Lógica , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...