Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166541

RESUMO

BACKGROUND: There has been a significant surge in the global prevalence of diabetes mellitus (DM), which increases the susceptibility of individuals to ovarian cancer (OC). However, the relationship between DM and OC remains largely unexplored. The objective of this study is to provide preliminary insights into the shared molecular regulatory mechanisms and potential biomarkers between DM and OC. METHODS: Multiple datasets from the GEO database were utilized for bioinformatics analysis. Single cell datasets from the GEO database were analysed. Subsequently, immune cell infiltration analysis was performed on mRNA expression data. The intersection of these datasets yielded a set of common genes associated with both OC and DM. Using these overlapping genes and Cytoscape, a protein‒protein interaction (PPI) network was constructed, and 10 core targets were selected. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then conducted on these core targets. Additionally, advanced bioinformatics analyses were conducted to construct a TF-mRNA-miRNA coregulatory network based on identified core targets. Furthermore, immunohistochemistry staining (IHC) and real-time quantitative PCR (RT-qPCR) were employed for the validation of the expression and biological functions of core proteins, including HSPAA1, HSPA8, SOD1, and transcription factors SREBF2 and GTAT2, in ovarian tumors. RESULTS: The immune cell infiltration analysis based on mRNA expression data for both DM and OC, as well as analysis using single-cell datasets, reveals significant differences in mononuclear cell levels. By intersecting the single-cell datasets, a total of 119 targets related to mononuclear cells in both OC and DM were identified. PPI network analysis further identified 10 hub genesincludingHSP90AA1, HSPA8, SNRPD2, UBA52, SOD1, RPL13A, RPSA, ITGAM, PPP1CC, and PSMA5, as potential targets of OC and DM. Enrichment analysis indicated that these genes are primarily associated with neutrophil degranulation, GDP-dissociation inhibitor activity, and the IL-17 signaling pathway, suggesting their involvement in the regulation of the tumor microenvironment. Furthermore, the TF-gene and miRNA-gene regulatory networks were validated using NetworkAnalyst. The identified TFs included SREBF2, GATA2, and SRF, while the miRNAs included miR-320a, miR-378a-3p, and miR-26a-5p. Simultaneously, IHC and RT-qPCR reveal differential expression of core targets in ovarian tumors after the onset of diabetes. RT-qPCR further revealed that SREBF2 and GATA2 may influence the expression of core proteins, including HSP90AA1, HSPA8, and SOD1. CONCLUSION: This study revealed the shared gene interaction network between OC and DM and predicted the TFs and miRNAs associated with core genes in monocytes. Our research findings contribute to identifying potential biological mechanisms underlying the relationship between OC and DM.


Assuntos
Diabetes Mellitus , MicroRNAs , Neoplasias Ovarianas , Humanos , Feminino , Superóxido Dismutase-1 , MicroRNAs/genética , Neoplasias Ovarianas/genética , Biologia Computacional , RNA Mensageiro , Redes Reguladoras de Genes , Microambiente Tumoral/genética
2.
Front Oncol ; 13: 1173863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324006

RESUMO

Objective: As one of the cancers that seriously threatens women's health, ovarian cancer has a high morbidity and mortality rate. Surgery and chemotherapy are the basic treatment strategies for ovarian cancer, and chemotherapy resistance is a significant factor in affecting the prognosis, survival cycle, and recurrence of ovarian cancer. This article aims to analyze articles about ovarian cancer and drug resistance via bibliometric software, offering new ideas and directions for researchers in this field. Methods: Both Citespace and Vosviewer are bibliometric software on the Java platform. Articles were collected on ovarian cancer and drug resistance in the Web of Science Core Collection database from 2013 to 2022. The countries, institutions, journals, authors, keywords, and references were analyzed, and the development status of this field was indicated from multiple perspectives. Results: Studies on ovarian cancer and drug resistance generally showed an increasing trend from 2013 to 2022. The People's Republic of China and Chinese institutions contributed more to this field. Gynecologic Oncology published the most articles, and the journal with the most citations was Cancer Research. Li Li was the author with the most publications, and Siegel RL was the author with the most citations. Through burst detection, it can be found that the research hotspots in this field mainly focused on the in-depth exploration of the drug resistance mechanism of ovarian cancer and the progress of PARP inhibitors and bevacizumab in the treatment of ovarian cancer. Conclusions: Many studies on the mechanism of drug resistance in ovarian cancer have been discovered; however, the deeper mechanism remains to be explored. Compared with traditional chemotherapy drugs, PARP inhibitors and bevacizumab have shown better efficacy, but PARP inhibitors have initially shown drug resistance. The future direction of this field should be to overcome the resistance of existing drugs and actively develop new ones.

3.
Front Oncol ; 13: 1228879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324024

RESUMO

[This corrects the article DOI: 10.3389/fonc.2023.1173863.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA