Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 310: 136837, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36252897

RESUMO

The COVID-19 outbreak led to the discovery of SARS-CoV-2 in sewage; thus, wastewater treatment plants (WWTPs) could have the virus in their effluent. However, whether SARS-CoV-2 is eradicated by sewage treatment is virtually unknown. Specifically, the objectives of this study include (i) determining whether a mixed matrixed membrane (MMM) is able to remove SARS-CoV-2 (polycarbonate (PC)-hydrous manganese oxide (HMO) and PC-silver nanoparticles (Ag-NP)), (ii) comparing filtration performance among different secondary treatment processes, and (iii) evaluating whether artificial neural networks (ANNs) can be employed as performance indicators to reduce SARS-CoV-2 in the treatment of sewage. At Shariati Hospital in Mashhad, Iran, secondary treatment effluent during the outbreak of COVID-19 was collected from a WWTP. There were two PC-Ag-NP and PC-HMO processes at the WWTP targeted. RT-qPCR was employed to detect the presence of SARS-CoV-2 in sewage fractions. For the purposes of determining SARS-CoV-2 prevalence rates in the treated effluent, 10 L of effluent specimens were collected in middle-risk and low-risk treatment MMMs. For PC-HMO, the log reduction value (LRV) for SARS-CoV-2 was 1.3-1 log10 for moderate risk and 0.96-1 log10 for low risk, whereas for PC-Ag-NP, the LRV was 0.99-1.3 log10 for moderate risk and 0.94-0.98 log10 for low risk. MMMs demonstrated the most robust absorption performance during the sampling period, with the least significant LRV recorded in PC-Ag-NP and PC-HMO at 0.94 log10 and 0.96 log10, respectively.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Águas Residuárias , SARS-CoV-2 , Esgotos , COVID-19/epidemiologia , Prata , Redes Neurais de Computação
2.
Chemosphere ; 308(Pt 3): 136333, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087726

RESUMO

In the past two decades, membrane technology has attracted considerable interest as a viable and promising method for water purification. Emerging organic micropollutants (EOMPs) in wastewater have trace, persistent, highly variable quantities and types, develop hazardous intermediates and are diffusible. These primary issues affect EOMPs polluted wastewater on an industrial scale differently than in a lab, challenging membranes-based EOMP removal. Graphene oxide (GO) promises state-of-the-art membrane synthesis technologies and use in EOMPs removal systems due to its superior physicochemical, mechanical, and electrical qualities and high oxygen content. This critical review highlights the recent advancements in the synthesis of next-generation GO membranes with diverse membrane substrates such as ceramic, polyethersulfone (PES), and polyvinylidene fluoride (PVDF). The EOMPs removal efficiencies of GO membranes in filtration, adsorption (incorporated with metal, nanomaterial in biodegradable polymer and biomimetic membranes), and degradation (in catalytic, photo-Fenton, photocatalytic and electrocatalytic membranes) and corresponding removal mechanisms of different EOMPs are also depicted. GO-assisted water treatment strategies were further assessed by various influencing factors, including applied water flow mode and membrane properties (e.g., permeability, hydrophily, mechanical stability, and fouling). GO additive membranes showed better permeability, hydrophilicity, high water flux, and fouling resistance than pristine membranes. Likewise, degradation combined with filtration is two times more effective than alone, while crossflow mode improves the photocatalytic degradation performance of the system. GO integration in polymer membranes enhances their stability, facilitates photocatalytic processes, and gravity-driven GO membranes enable filtration of pollutants at low pressure, making membrane filtration more inexpensive. However, simultaneous removal of multiple contaminants with contrasting characteristics and variable efficiencies in different systems demands further optimization in GO-mediated membranes. This review concludes with identifying future critical research directions to promote research for determining the GO-assisted OMPs removal membrane technology nexus and maximizing this technique for industrial application.


Assuntos
Poluentes Ambientais , Grafite , Adsorção , Grafite/química , Membranas Artificiais , Oxigênio , Polímeros , Águas Residuárias
3.
J Clean Prod ; 347: 131268, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35287337

RESUMO

This study aims to investigate blockchain technology for agricultural supply chains during the COVID-19 pandemic. Benefits and solutions are identified for the smooth conduction of agricultural supply chains during COVID-19 using blockchain. This study uses interviews with agricultural companies operating in Pakistan. The findings discover the seven most commonly shared benefits of applying blockchain technology, four major challenges, and promising solutions. About 100% of the respondents mentioned blockchain as a solution for tracking the shipment during COVID-19, data retrieval and data management, product and transaction frauds, and an Inflexible international supply chain. Roughly 75% of the respondents mentioned the challenge of lack of data retrieval and data management and the Inflexible international supply chain in COVID-19 besides their solutions. This study can expand existing knowledge related to agricultural supply chains. The experiences shared in this study can serve as lessons for practitioners to adopt the blockchain technology for performing agricultural supply chain during pandemic situations such as COVID-19.

4.
Renew Sustain Energy Rev ; 139: 110643, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36339890

RESUMO

Energy resources are vital for the economic development of any nation, and they are currently recognised as an essential commodity for human beings. Many countries are facing various levels up to severe energy crisis due to limited natural resources, coupled with the Covid-19 pandemic. This crisis can lead to the shutdown or restriction of many industrial units, limited energy access, exacerbating unemployment, simultaneous impacts on people's lives. The main reason for these problems is the increasing gap between energy supply and demand, logistics, financial issues, as well as ineffective strategic planning issues. Different countries have different visions, missions, and strategies for energy management. Integrated strategic management is requisite for managing global energy. This study aims to develop a strategic management framework that can be used as a methodology for policymakers to analyse, plan, implement, and evaluate the energy strategy globally. A conceptual research method that relies on examining the related literature is applied to develop the framework. The present study yielded two main observations: 1) The identification of key concepts to consider in designing the strategic management framework for global energy, and 2) A strategic management framework that integrates the scope, process, important components, and steps to manage global energy strategies. This framework would contribute to providing a standard procedure to manage energy strategies for policymakers at the global, regional, national, state, city, district, and sector levels.

5.
Artigo em Inglês | MEDLINE | ID: mdl-33227940

RESUMO

The COVID-19 epidemic has spread across the world within months and creates multiple challenges for healthcare providers. Patients with cardiovascular disease represent a vulnerable population when suffering from COVID-19. Most hospitals have been facing difficulties in the treatment of COVID-19 patients, and there is a need to minimise patient flow time so that staff health is less endangered, and more patients can be treated. This article shows how to use simulation techniques to prepare hospitals for a virus outbreak. The initial simulation of the current processes of the heart clinic first identified the bottlenecks. It confirmed that the current workflow is not optimal for COVID-19 patients; therefore, to reduce waiting time, three optimisation scenarios are proposed. In the best situation, the discrete-event simulation of the second scenario led to a 62.3% reduction in patient waiting time. This is one of the few studies that show how hospitals can use workflow modelling using timed coloured Petri nets to manage healthcare systems in practice. This technique would be valuable in these challenging times as the health of staff, and other patients are at risk from the nosocomial transmission.


Assuntos
Cardiologia/organização & administração , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Fluxo de Trabalho , Betacoronavirus , COVID-19 , Simulação por Computador , Humanos , SARS-CoV-2
6.
J Environ Manage ; 239: 38-47, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30878873

RESUMO

Inaccessible hygiene water sources and sanitation are one of the sustainability issues that need to be solved. An attempt to solve this problem is to change the conventional system used in the water supply and sewage treatment to sustainable water and waste management. To transform the system, companies initially need to map their business value chain. However, this process is often not receiving a full attention by the organisation. In an academic perspective, there are limited studies that map the value chains of water and waste systems. To overcome this limitation, the present study aims to map the value chain processes of the water and wastewater utility companies towards a sustainability solution. A review of related studies is used to conduct this study. Khuzestan Urban Water and Sewage company in Iran has been selected as case studies. The mapping results indicate a lack of sustainability integration in a water management system that leads to ineffective and inefficient water management. Value chain mapping process is significant for practitioners, particularly in the water and sewage companies, as a starting point for transforming their conventional water management systems towards sustainability. Experts at the company stated that value chain mapping as part of value chain analysis enables organisations to increase operational efficiency and eliminate waste by 57%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Irã (Geográfico) , Águas Residuárias , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...