Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 16(3)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38604157

RESUMO

Scaffolds play a pivotal role in tissue engineering and serve as vital biological substitutes, providing structural support for cell adhesion and subsequent tissue development. An ideal scaffold must possess mechanical properties suitable for tissue function and exhibit biodegradability. Although synthetic polymer scaffolds offer high rigidity and elasticity owing to their reactive side groups, which facilitate tailored mechanical and rheological properties, they may lack biological cues and cause persistent side effects during degradation. To address these challenges, natural polymers have garnered attention owing to their inherent bioactivity and biocompatibility. However, natural polymers such as silk fibroin (SF) and tyramine-modified alginate (AT) have limitations, including uncontrolled mechanical properties and weak structural integrity. In this study, we developed a blend of SF and AT as a printable biomaterial for extrusion-based 3D printing. Using photocrosslinkable SF/AT inks facilitated the fabrication of complex scaffolds with high printability, thereby enhancing their structural stability. The incorporation of silver nitrate facilitated the tunability of mechanical and rheological behaviors. SF/AT scaffolds with varying stiffness in the physiologically relevant range for soft tissues (51-246 kPa) exhibited excellent biocompatibility, indicating their promising potential for diverse applications in tissue engineering.


Assuntos
Alginatos , Fibroínas , Impressão Tridimensional , Nitrato de Prata , Alicerces Teciduais , Fibroínas/química , Alginatos/química , Alicerces Teciduais/química , Nitrato de Prata/química , Animais , Reagentes de Ligações Cruzadas/química , Engenharia Tecidual , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Reologia , Humanos , Camundongos , Processos Fotoquímicos , Tiramina/química
2.
Healthc Inform Res ; 30(1): 3-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38359845

RESUMO

OBJECTIVES: Medical artificial intelligence (AI) has recently attracted considerable attention. However, training medical AI models is challenging due to privacy-protection regulations. Among the proposed solutions, federated learning (FL) stands out. FL involves transmitting only model parameters without sharing the original data, making it particularly suitable for the medical field, where data privacy is paramount. This study reviews the application of FL in the medical domain. METHODS: We conducted a literature search using the keywords "federated learning" in combination with "medical," "healthcare," or "clinical" on Google Scholar and PubMed. After reviewing titles and abstracts, 58 papers were selected for analysis. These FL studies were categorized based on the types of data used, the target disease, the use of open datasets, the local model of FL, and the neural network model. We also examined issues related to heterogeneity and security. RESULTS: In the investigated FL studies, the most commonly used data type was image data, and the most studied target diseases were cancer and COVID-19. The majority of studies utilized open datasets. Furthermore, 72% of the FL articles addressed heterogeneity issues, while 50% discussed security concerns. CONCLUSIONS: FL in the medical domain appears to be in its early stages, with most research using open data and focusing on specific data types and diseases for performance verification purposes. Nonetheless, medical FL research is anticipated to be increasingly applied and to become a vital component of multi-institutional research.

3.
Biomaterials ; 305: 122459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199216

RESUMO

Retinal detachment and other vision-threatening disorders often necessitate vitreous body removal and tamponade injection for retina stabilization. Current clinical tamponades such as silicone oil and expansile gases have drawbacks, including patient discomfort and the need for secondary surgery. We introduce a transparent alginate-phenylboronic acid/polyvinyl alcohol composite hydrogel (TALPPH) as a novel vitreous substitute with tamponading capabilities. In vitro physicochemical, rheological, and optical characterization of in situ self-healable TALPPH was performed, and long-term biocompatibility was assessed in a rabbit model of vitrectomy retinal detachment. In vivo evaluations confirmed TALPPH's ability to inhibit retinal detachment recurrence and preserve rabbit vision without adverse effects. TALPPH's close resemblance to the natural vitreous body suggests potential as a vitreous tamponade substitute for future ophthalmological applications.


Assuntos
Hidrogéis , Álcool de Polivinil , Descolamento Retiniano , Animais , Humanos , Coelhos , Hidrogéis/química , Descolamento Retiniano/complicações , Descolamento Retiniano/cirurgia , Alginatos/farmacologia , Corpo Vítreo , Vitrectomia
4.
Adv Mater ; 36(13): e2310338, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148316

RESUMO

Customizable bioadhesives for individual organ requirements, including tissue type and motion, are essential, especially given the rise in implantable medical device applications demanding adequate underwater adhesion. While synthetic bioadhesives are widely used, their toxicity upon degradation shifts focus to biocompatible natural biomaterials. However, enhancing the adhesive strengths of these biomaterials presents ongoing challenges while accommodating the unique properties of specific organs. To address these issues, three types of customized underwater bioadhesive patches (CUBAPs) with strong, water-responsive adhesion and controllable biodegradability and stretchability based on bioengineered mussel adhesive proteins conjugated with acrylic acid and/or methacrylic acid are proposed. The CUBAP system, although initially nonadhesive, shows strong underwater adhesion upon hydration, adjustable biodegradation, and adequate physical properties by adjusting the ratio of poly(acrylic acid) and poly(methacrylic acid). Through ex vivo and in vivo evaluations using defective organs and the implantation of electronic devices, the suitability of using CUBAPs for effective wound healing in diverse internal organs is demonstrated. Thus, this innovative CUBAP system offers strong underwater adhesiveness with tailored biodegradation timing and physical properties, giving it great potential in various biomedical applications.


Assuntos
Adesivos , Metacrilatos , Água , Adesividade , Materiais Biocompatíveis/farmacologia , Cicatrização , Hidrogéis
5.
Carbohydr Polym ; 313: 120895, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182936

RESUMO

While the natural carbohydrate alginate has enabled effective three-dimensional (3D) extrusion bioprinting, it still suffers from some issues such as low printability and resolution and limited cellular function due to ionic crosslinking dependency. Here, we prepared a harmless visible light-based photocrosslinkable alginate by chemically bonding tyrosine-like residues onto alginate chains to propose a new microgel manufacturing system for the development of 3D-printed bioinks. The photocrosslinkable tyramine-conjugated alginate microgel achieved both higher cell viability and printing resolution compared to the bulk gel form. This alginate-based jammed granular microgel bioink showed excellent 3D bioprinting ability with maintained structural stability. As a biocompatible material, the developed multiple cell-loaded photocrosslinkable alginate-based microgel bioink provided excellent proliferation and migration abilities of laden living cells, providing an effective strategy to construct implantable functional artificial organ structures for 3D bioprinting-based tissue engineering.


Assuntos
Microgéis , Alicerces Teciduais , Alicerces Teciduais/química , Alginatos/química , Tiramina , Gelatina/química , Engenharia Tecidual/métodos , Luz , Hidrogéis/química , Impressão Tridimensional
6.
ACS Appl Mater Interfaces ; 14(39): 44261-44270, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126093

RESUMO

SiO is a promising anode material for practical Li-ion batteries because it can achieve a much higher capacity than graphite and a better capacity retention than Si. However, SiO suffers from poor initial Coulombic efficiency (ICE). Here, we report on a fundamentally different approach to increase the low ICE of SiO while achieving high capacity and long-term cycle stability compared to previous approaches such as electrochemical/chemical pre-lithiation processes. To enhance the ICE, the long-range/short-range orders of amorphous SiO2 in SiO are increased by the chemical reaction of a small amount of LiOH·H2O even at a much lower temperature (900 °C) than the reported. The increased crystallization of SiO2 substantially reduces the irreversible electrochemical reaction of SiO. As a result, the Li-added SiO shows substantially increased ICE, ∼82.7%, which is one of the highest values. Furthermore, we demonstrate that controlling the crystallization of SiO can enable us to achieve high ICE, high reversible capacity, and superior capacity retention (∼100% at 1C rate for 100 cycles) in SiO simultaneously. The understanding and findings will pave the way to design high-capacity SiO with high ICE and long-term stability for practical high energy density Li batteries.

7.
Front Pharmacol ; 12: 660313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393769

RESUMO

Lung cancer has a high mortality rate, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Patients have been observed to acquire resistance against various anticancer agents used for NSCLC due to L858R (or Exon del19)/T790M/C797S-EGFR mutations. Therefore, next-generation drugs are being developed to overcome this problem of acquired resistance. The goal of this study was to use artificial intelligence (AI) to discover drug candidates that can overcome acquired resistance and reduce the limitations of the current drug discovery process, such as high costs and long durations of drug design and production. To generate ligands using AI, we collected data related to tyrosine kinase inhibitors (TKIs) from accessible libraries and used LSTM (Long short term memory) based transfer learning (TL) model. Through the simplified molecular-input line-entry system (SMILES) datasets of the generated ligands, we obtained drug-like ligands via parameter-filtering, cyclic skeleton (CSK) analysis, and virtual screening utilizing deep-learning method. Based on the results of this study, we are developing prospective EGFR TKIs for NSCLC that have overcome the limitations of existing third-generation drugs.

8.
Adv Mater ; 33(14): e2006759, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33543521

RESUMO

Embolization, which is a minimally invasive endovascular treatment, is a safe and effective procedure for treating vascular malformations (e.g., aneurysms). Hydrogel microfibers obtained via spatiotemporally controllable in situ photocrosslinking exhibit great potential for embolizing aneurysms. However, this process is challenging because of the absence of biocompatible and morphologically stable hydrogels and the difficulty in continuously spinning the microfibers via in situ photocrosslinking in extreme endovascular environments such as those involving a tortuous geometry and high absorbance. A double-crosslinked alginate-based hydrogel with tantalum nanopowder (DAT) that exploits the synergistic effect of covalent crosslinking by visible-light irradiation and ionic crosslinking using Ca2+ , which is present in the blood, is developed in this study. Furthermore, an effective strategy to design and produce an optical-fiber-integrated microfluidic device (OFI-MD) that can continuously spin hydrogel microfibers via in situ photocrosslinking in extreme endovascular environments is proposed. As an embolic material, DAT exhibits promising characteristics such as radiopacity, nondissociation, nonswelling, and constant mechanical strength in blood, in addition to excellent cyto- and hemo-compatibilities. Using OFI-MD to spin DAT microfibers continuously can help fill aneurysms safely, uniformly, and completely within the endovascular simulator without generating microscopic fragments, which demonstrates its potential as an effective embolization strategy.


Assuntos
Alginatos/química , Embolização Terapêutica/instrumentação , Dispositivos Lab-On-A-Chip , Fibras Ópticas , Malformações Vasculares/terapia , Hidrogéis , Engenharia Tecidual
9.
Angew Chem Int Ed Engl ; 60(10): 5467-5474, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205486

RESUMO

A mild and operationally simple C(sp3 )-H trifluoromethylation method was developed for unactivated alkanes by utilizing a bench-stable CuIII complex, bpyCu(CF3 )3 , as the initiator of the visible-light photoinduced reaction, the source of a trifluoromethyl radical as a hydrogen atom transfer reagent, and the source of a trifluoromethyl anion for functionalization. The reaction was initiated by the generation of reactive electrophilic carbon-centered CF3 radical through photoinduced homolytic cleavage of bpyCu(CF3 )3 , followed by hydrogen abstraction from an unactivated C(sp3 )-H bond. Comprehensive mechanistic investigations based on a combination of experimental and computational methods suggested that C-CF3 bond formation was enabled by radical-polar crossover and ionic coupling between the resulting carbocation intermediate and the anionic CF3 source. The methylene-selective reaction can be applied to the direct, late-stage trifluoromethylation of natural products and bioactive molecules.

10.
Chem Sci ; 12(1): 363-373, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34163602

RESUMO

Control over site-selectivity is a critical challenge for practical application of catalytic C-H functionalization reactions in organic synthesis. Despite the seminal breakthrough of the Pd-catalyzed C(sp2)-H arylation of simple arenes via a concerted metalation-deprotonation (CMD) pathway in 2006, understanding the site-selectivity of the reaction still remains elusive. Here, we have comprehensively investigated the scope, site-selectivity, and mechanism of the Pd-catalyzed direct C-H arylation reaction of simple arenes. Counterintuitively, electron-rich arenes preferably undergo meta-arylation without the need for a specifically designed directing group, whereas electron-deficient arenes bearing fluoro or cyano groups exhibit high ortho-selectivity and electron-deficient arenes bearing bulky electron-withdrawing groups favor the meta-product. Comprehensive mechanistic investigations through a combination of kinetic measurements and stoichiometric experiments using arylpalladium complexes have revealed that the Pd-based catalytic system works via a cooperative bimetallic mechanism, not the originally proposed monometallic CMD mechanism, regardless of the presence of a strongly coordinating L-type ligand. Notably, the transmetalation step, which is influenced by a potassium cation, is suggested as the selectivity-determining step.

11.
Chem Sci ; 12(5): 1915-1923, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163955

RESUMO

Catalytic dehydrogenation (CD) via visible-light photoredox catalysis provides an efficient route for the synthesis of aromatic compounds. However, access to N-aryl amines, which are widely utilized synthetic moieties, via visible-light-induced CD remains a significant challenge, because of the difficulty in controlling the reactivity of amines under photocatalytic conditions. Here, the visible-light-induced photocatalytic synthesis of N-aryl amines was achieved by the CD of allylic amines. The unusual strategy using C6F5I as an hydrogen-atom acceptor enables the mild and controlled CD of amines bearing various functional groups and activated C-H bonds, suppressing side-reaction of the reactive N-aryl amine products. Thorough mechanistic studies suggest the involvement of single-electron and hydrogen-atom transfers in a well-defined order to provide a synergistic effect in the control of the reactivity. Notably, the back-electron transfer process prevents the desired product from further reacting under oxidative conditions.

12.
Biomater Res ; 23: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827880

RESUMO

BACKGROUND: In recent years, three-dimensional (3D) printing has begun to be widely used in tissue engineering. Natural biomaterials have been employed to overcome the limitations of synthetic polymers. However, their low mechanical strength and poor printability are major disadvantages. Photocrosslinking is the most promising fabrication strategy because it is non-invasive and easy to control light intensity and exposure. In this article, developments of photocrosslinkable natural biomaterials in the field of 3D printing are reviewed. MAIN BODY: Photocrosslinkable biomaterials can be broadly classified into materials that use ultraviolet (UV) and visible lights. Many natural biomaterials such as gelatin, hydroxyapatite, silk fibroin, and pectin have been modified through acrylation, crosslinked by 365 nm UV light, and 3D printed. Riboflavin could also be used to crosslink and print collagen or decellularized extracellular matrix (dECM). In the case of silk-like aneroin and modified gelatin, crosslinking is possible by forming a dityrosine bond using 452 nm visible light. CONCLUSION: Despite the tremendous researches on the developments of photocrosslinkable 3D printing natural biomaterials, further efforts are necessary to develop source biomaterials with excellent biological functions and sufficient mechanical integrity.

13.
Front Cell Neurosci ; 13: 265, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31263403

RESUMO

Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer's disease, epilepsy, fragile X syndrome (FXS), Parkinson's disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain's networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.

14.
BMC Microbiol ; 18(1): 138, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340527

RESUMO

BACKGROUND: Endothelial cells play a major role in highly pathogenic avian influenza (HPAI) virus pathogenesis in gallinaceous poultry species (e.g. chicken, turkey and quail). Upon infection of gallinaceous poultry with HPAI viruses, endothelial cells throughout the body become rapidly infected, leading to systemic dissemination of the virus, disseminated intravascular coagulation, oedema and haemorrhaging. In contrast, the pathogenesis of HPAI viruses in most wild bird species (e.g. duck, goose and gull species) is not associated with endothelial tropism. Indeed, viral antigen is not found in the endothelial cells of most wild bird species following infection with HPAI viruses. This differential endothelial cell tropism in avian species is poorly understood, mainly due to the absence of appropriate cell culture systems. RESULTS: Here, we describe the isolation and purification of primary duck endothelial cells from the aorta or bone marrow of Pekin duck embryos. Cells were differentiated in the presence of vascular endothelial growth factor and, if needed, enriched via fluorescent-activated cell sorting based on the uptake of acetylated low-density lipoprotein. The expression of von Willebrand factor, a key marker of endothelial cells, was confirmed by polymerase chain reaction. Monocultures of duck endothelial cells, either derived from the aorta or the bone marrow, were susceptible to infection with an H5N1 HPAI virus but to a much lesser extent than chicken endothelial cells. CONCLUSIONS: The methods described herein to isolate and purify duck endothelial cells from the aorta or bone marrow could also be applied to obtain microvascular endothelial cells from other tissues and organs, such as the lung or the intestine, and represent a valuable tool to study the pathogenesis of avian viruses.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais/virologia , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/patogenicidade , Animais , Antígenos Virais , Aorta/citologia , Aorta/virologia , Células da Medula Óssea/virologia , Células Cultivadas , Patos/virologia , Citometria de Fluxo , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Fator A de Crescimento do Endotélio Vascular/farmacologia
15.
Angew Chem Int Ed Engl ; 57(21): 6166-6170, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29637684

RESUMO

The N-monomethyl functionality is a common motif in a variety of synthetic and natural compounds. However, facile access to such compounds remains a fundamental challenge in organic synthesis owing to selectivity issues caused by overmethylation. To address this issue, we have developed a method for the selective, catalytic monomethylation of various structurally and functionally diverse amines, including typically problematic primary aliphatic amines, using methanol as the methylating agent, which is a sustainable chemical feedstock. Kinetic control of the aliphatic amine monomethylation was achieved by using a readily available ruthenium catalyst at an adequate temperature under hydrogen pressure. Various substrates including bio-related molecules and pharmaceuticals were selectively monomethylated, demonstrating the general utility of the developed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...