Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(12): 15273-15285, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482600

RESUMO

Zeolitic-imidazolate framework-8 (ZIF-8), composed of a zinc center tetrahedrally coordinated with 2-methylimidazolate linkers, has garnered extensive attention as a selective filler for propylene-selective mixed-matrix membranes (MMMs). Recently, we reported an innovative and scalable MMM fabrication approach, termed "phase-inversion in sync with in situ MOF formation" (PIMOF), aimed at addressing the prevailing challenges in MMM processing. In this study, we intend to investigate the effect of additives, specifically sodium formate and 1,4-butanediol, on the modification of ZIF-8 filler formation within the polymer matrix in order to further improve the separation performance of the asymmetric MMMs prepared by the PIMOF. Remarkably, MMMs prepared with sodium formate as an additive in the coagulation bath exhibited an unprecedented C3H6/C3H8 separation factor of 222.5 ± 1.8 with a C3H6 permeance of 10.1 ± 0.3 GPU, surpassing that of MMMs prepared without additives (a C3 separation factor of 57.7 ± 11.2 with a C3 permeance of 22.5 ± 4.5 GPU). Our computational work complements the experimental investigation by studying the effect of ZIF-8 nanoparticle size on the specific surface interaction energy and apertures of ZIF-8. Calculations indicate that by having smaller ZIF-8 nanoparticles, stronger interactions are present with the polymer affecting the aperture of ZIF-8 nanoparticles. This reduction in aperture size is expected to improve selectivity toward propylene by reducing the permeability of propylene. These results represent a significant advancement, surpassing the performance of all previously reported propylene-selective MMMs and most high-quality polycrystalline ZIF-8 membranes. The notably enhanced separation performance primarily arises from the formation of exceedingly small ZIF-8-like particles with an amorphous or poorly crystalline structure, corroborated by our computational work.

2.
Langmuir ; 39(13): 4622-4630, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966511

RESUMO

Extremely water-repellent surfaces with low sliding angle (SA) have been obtained with a facile single-step sol-gel strategy via co-condensation of tetraethoxysilane (TEOS) and hexadecyltrimethoxysilane (HDTMS) in basic media with an efficient self-cleaning property. We investigated the effect of the molar ratio of HDTMS and TEOS on the properties of the modified silica-coated poly(ethylene terephthalate) (PET) film. A high water contact angle (WCA) of 165° and a low SA of 1.35° were obtained at a molar ratio of 0.125. The dual roughness pattern for the low SA was developed by a one-step coating of the modified silica with a molar ratio of 0.125. The evolution of the surface to the dual roughness pattern by nonequilibrium dynamics depended on the size and shape factor of modified silica. The primitive size and the shape factor of the organosilica with a molar ratio of 0.125 were 70 nm and 0.65, respectively. We also presented a new method to determine the superficial surface friction (ζ) of the superhydrophobic surface. The ζ was a physical parameter that characterized the slip and rolling behavior of water droplets on the superhydrophobic surface along with the equilibrium property WCA and the static frictional property SA.

3.
Macromol Rapid Commun ; 43(2): e2100579, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34708464

RESUMO

High-resolution 3D-printable hydrogels with high mechanical strength and biocompatibility are in great demand because of their potential applications in numerous fields. In this study, a material system comprising Pluronic F-127 dimethacrylate (FDMA) is developed to function as a direct ink writing (DIW) hydrogel for 3D printing. FDMA is a triblock copolymer that transforms into micelles at elevated temperatures. The transformation increases the viscosity of FDMA and preserves its structure during DIW 3D printing, whereupon the printed structure is solidified through photopolymerization. Because of this viscosity shift, various functionalities can be incorporated through the addition of other materials in the solution state. Acrylic acid is incorporated into the pregel solution to enhance the mechanical strength, because the carboxylate group of poly(acrylic acid) ionically crosslinks with Fe3+ , increasing the toughness of the DIW hydrogel 37 times to 2.46 MJ m-3 . Tough conductive hydrogels are also 3D printed by homogenizing poly(3,4-ethylenedioxythiophene) polystyrene sulfonate into the pregel solution. Furthermore, the FDMA platform developed herein uses DIW, which facilitates multicartridges 3D printing, and because all the materials included are biocompatible, the platform may be used to fabricate complex structures for biological applications.


Assuntos
Hidrogéis , Poloxâmero , Tinta , Polímeros , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...