Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37686745

RESUMO

Mori Folium (Morus alba leaf, MF) and Mori Cortex Radicis (Morus alba root cortex, MR) have been studied for their anti-obesity effects by enhancing the browning process and inhibiting adipogenesis. However, important aspects of their protective mechanisms have not been thoroughly investigated, which could aid in developing functional food. Thus, this study aims to determine the synergistic effects of MF and MR against obesity and its associated mechanisms. In an in vitro cell culture model of brown adipocytes, a 1:1 mixture of MF and MR showed a synergistic effect on the expression of brown adipocyte-specific genes, including Ucp-1, Ppargc1a, Cbp/p300-interacting transactivator (Cited), Prdm16, Tbx1, and Fgf21 compared with either MF- or MR-treated conditions. Moreover, they demonstrated the involvement of cAMP and Ca2+ in induction of brown adipocyte-specific genes. In an in vivo model using HFD-fed mice, MF/MR significantly inhibited weight gain, plasma cholesterol, LDL, TG content, fat mass, and adipocyte size. Furthermore, MF/MR inhibited morphological alteration and the expressions of fatty acid synthesis genes such as Srebp1 and Fasn in the white adipose tissue. Thermogenesis genes were recovered in the brown adipose tissue with MF/MR supplementation, indicating that MF/MR regulated adipocytic dysmetabolism where AMPK signaling is involved. In conclusion, these results suggested that MF/MR regulates brown and beige adipocyte processes, providing one of the preventive functional food/herbal medicines against obesity and its associated metabolic diseases.


Assuntos
Adipócitos Marrons , Obesidade , Animais , Camundongos , Obesidade/genética , Aumento de Peso , Tecido Adiposo Marrom
2.
Nutrients ; 15(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375680

RESUMO

Activating brown adipose tissue (BAT) and stimulating white adipose tissue (WAT) browning is a prospective obesity treatment method. Dietary components derived from plants are the most effective approach to activate BAT and promote WAT browning in rodents. This study investigated the synergistic effects of Panax ginseng (PG) and Diospyros kaki leaf (DKL) extract on adipocyte differentiation and browning, as well as the molecular mechanism underlying their beneficial effects. The administration of PG and DKL to HFD-induced obese mice significantly decreased body weight and epididymal and abdominal adipose tissue mass. In in vitro, PG inhibited the adipogenesis of 3T3-L1 adipocytes by regulating the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, DKL negligibly influenced the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of UCP-1, PGC-1α, and PPARα in BAT and/or WAT. Moreover, PG and DKL inhibited adipogenesis synergistically and activated white adipocyte browning via AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) pathways. These results suggest that a combination of PG and DKL regulates adipogenesis in white adipocytes and browning in brown adipocytes by activating AMPK/SIRT1 axis. The potential use of PG and DKL may represent an important strategy in obesity management that will be safer and more effective.


Assuntos
Diospyros , Panax , Camundongos , Animais , Adipócitos Brancos , Proteínas Quinases Ativadas por AMP/metabolismo , Panax/química , Sirtuína 1/metabolismo , Estudos Prospectivos , Adipogenia , PPAR gama/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Folhas de Planta/metabolismo , Células 3T3-L1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...