Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38610511

RESUMO

Flexible neural probes are attractive emerging technologies for brain recording because they can effectively record signals with minimal risk of brain damage. Reducing the electrode impedance of the probe before recording is a common practice of many researchers. However, studies investigating the impact of low impedance levels on high-quality recordings using flexible neural probes are lacking. In this study, we electrodeposited Pt onto a commercial flexible polyimide neural probe and investigated the relationship between the impedance level and the recording quality. The probe was inserted into the brains of anesthetized mice. The electrical signals of neurons in the brain, specifically the ventral posteromedial nucleus of the thalamus, were recorded at impedance levels of 50, 250, 500 and 1000 kΩ at 1 kHz. The study results demonstrated that as the impedance decreased, the quality of the signal recordings did not consistently improve. This suggests that extreme lowering of the impedance may not always be advantageous in the context of flexible neural probes.


Assuntos
Lesões Encefálicas , Animais , Camundongos , Impedância Elétrica , Neurônios , Encéfalo , Eletricidade
2.
Biosens Bioelectron ; 247: 115932, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113695

RESUMO

Early detection and effective blood glucose control are critical for preventing and managing diabetes-related complications. Conventional glucometers provide point-in-time measurements but are painful and cannot facilitate continuous monitoring. Continuous glucose monitoring systems are comfortable but face challenges in terms of accuracy, cost, and sensor lifespan. This study aimed to develop a microneedle-based sensor patch for minimally invasive, painless, and continuous glucose monitoring in the interstitial fluid to address these limitations. Experimental results confirm painless and minimally invasive penetration of the skin tissue with cylindrical microneedles (3 × 3 array) to a depth of approximately 520 µm with minimal loading. The microneedle sensors fabricated with precision using the complementary metal-oxide semiconductor process were immobilized with glucose oxidase, as confirmed through phase angle analysis. Long-term tests confirmed the effective operation of the sensor for up to seven days. Glucose concentrations determined from the fitted concentration-impedance curves correlated well with those measured using commercial glucometers, indicating the reliability and precision of the microneedle sensor. The flexible and minimally invasive sensor developed in this study facilitates painless and continuous glucose monitoring.


Assuntos
Técnicas Biossensoriais , Automonitorização da Glicemia , Glicemia , Polímeros , Líquido Extracelular/química , Impedância Elétrica , Reprodutibilidade dos Testes , Agulhas , Glucose/análise
3.
Nano Lett ; 22(18): 7636-7643, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106948

RESUMO

Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.

4.
Small ; 18(8): e2105087, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894074

RESUMO

The diamond-graphite hybrid thin film with low-dimensional nanostructure (e.g., nitrogen-included ultrananocrystalline diamond (N-UNCD) or the alike), has been employed in many impactful breakthrough applications. However, the detailed picture behind the bottom-up evolution of such intriguing carbon nanostructure is far from clarified yet. Here, the authors clarify it, through the concerted efforts of microscopic, physical, and electrochemical analyses for a series of samples synthesized by hot-filament chemical vapor deposition using methane-hydrogen precursor gas, based on the hydrogen-dependent surface reconstruction of nanodiamond and on the substrate-temperature-dependent variation of the growth species (atomic hydrogen and methyl radical) concentration near substrate. The clarified picture provides insights for a drastic enhancement in the electrochemical activities of the hybrid thin film, concerning the detection of important biomolecule, that is, ascorbic acid, uric acid, and dopamine: their limits of detections are 490, 35, and 25 nm, respectively, which are among the best of the all-carbon thin film electrodes in the literature. This work also enables a simple and effective way of strongly enhancing AA detection.


Assuntos
Grafite , Nanoestruturas , Diamante/química , Dopamina/análise , Técnicas Eletroquímicas , Eletrodos , Grafite/química , Nanoestruturas/química
5.
Nano Lett ; 21(14): 6343-6351, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33998792

RESUMO

Extracellular electrical stimulation (ES) can provide electrical potential from outside the cell membrane, but it is often ineffective due to interference from external factors such as culture medium resistance and membrane capacitance. To address this, we developed a vertical nanowire electrode array (VNEA) to directly provide intracellular electrical potential and current to cells through nanoelectrodes. Using this approach, the cell membrane resistivity and capacitance could be excluded, allowing effective ES. Human fetal neural stem cells (hfNSCs) were cultured on the VNEA for intracellular ES. Combining the structural properties of VNEA and VNEA-mediated ES, transient nanoscale perforation of the electrode was induced, promoting cell penetration and delivering current to the cell. Intracellular ES using VNEA improved the neuronal differentiation of hfNSCs more effectively than extracellular ES and facilitated electrophysiological functional maturation of hfNSCs because of the enhanced voltage-dependent ion-channel activity. The results demonstrate that VNEA with advanced nanoelectrodes serves as a highly effective culture and stimulation platform for stem-cell neurogenesis.


Assuntos
Nanofios , Células-Tronco Neurais , Diferenciação Celular , Estimulação Elétrica , Eletrodos , Humanos , Neurogênese
6.
Nanotechnology ; 32(12): 125702, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33264761

RESUMO

Gallium nitride nanowires (GaN NWs) with triangular cross-section exhibit universal conductance fluctuations (UCF) originating from the quantum interference of electron wave functions in the NWs. The amplitude of UCF is inversely proportional to the applied bias current. The bias dependence of UCF, combined with temperature dependence of the resistance suggests that phase coherent transport dominates over normal transport in GaN NWs. A unique temperature dependence of phase-coherent length and fluctuation amplitude is associated with inelastic electron-electron scattering in NWs. The phase-coherence length extracted from the UCF is as large as 400 nm at 1.8 K, and gradually decreases as temperature increases up to 60 K.

7.
ACS Appl Mater Interfaces ; 12(50): 55596-55604, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33269924

RESUMO

The aggregation and accumulation of amyloid-ß (Aß) peptides is a characteristic pathology for Alzheimer's disease (AD). Although noninvasive therapies involving stimulation by electric field (EF) have been reported, the efficiency of Aß disaggregation needs to be further improved for this strategy to be used in clinical settings. In this study, we show that an electrode based on a vertical nanowire electrode array (VNEA) is far more superior to a typical flat-type electrode in disaggregating Aß plaques. The enhanced disaggregation efficiency of VNEA is due to the formation of high-strength local EF between the nanowires, as verified by in silico and empirical evidence. Compared with those of the flat electrode, the simulation data revealed that 19.8-fold and 8.8-fold higher EFs are generated above and between the nanowires, respectively. Moreover, empirical cyclic voltammetry data demonstrated that VNEA had a 2.7-fold higher charge capacity than the flat electrode; this is associated with the higher surface area of VNEA. The conformational transition of Aß peptides between the ß-sheet and α-helix could be sensitively monitored in real time by the newly designed in situ circular dichroism instrument. This highly efficient EF-configuration of VNEA will lower the stimulation power for disaggregating the Aß plaques, compared to that of other existing field-mediated modulation systems. Considering the complementary metal-oxide-semiconductor-compatibility and biocompatible strength of the EF for perturbing the Aß aggregation, our study could pave the way for the potential use of electric stimulation devices for in vivo therapeutic application as well as scientific studies for AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Eletricidade , Nanofios/química , Agregados Proteicos/fisiologia , Doença de Alzheimer/patologia , Dicroísmo Circular , Eletrodos , Humanos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Desdobramento de Proteína , Termodinâmica
8.
ACS Omega ; 5(42): 27295-27303, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134692

RESUMO

Detecting amyloid beta (Aß) in unpurified blood to diagnose Alzheimer's disease (AD) is challenging owing to low concentrations of Aß and the presence of many other substances in the blood. Here, we propose a 3D sensor for AD diagnosis using blood plasma, with pairs of 3D silicon micropillar electrodes with a comprehensive circuit configuration. The sensor is developed with synthesized artificial peptide and impedance analysis based on a maximum signal-to-noise ratio. Its sensitivity and selectivity were verified using an in vitro test based on samples of human blood serum, which showed its feasibility for application in diagnosis of AD by testing blood plasma of the AD patient. The 3D sensor is designed to improve reliability by checking the impedance of each pair multiple times via constructing a reference pair and a working pair on the same sensor. Therefore, we demonstrate the ability of the 3D sensor to recognize cases of AD using blood plasma and introduce its potential as a self-health care sensor for AD patients.

9.
Nano Lett ; 20(10): 6947-6956, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32877191

RESUMO

Direct reprogramming is an efficient strategy to produce cardiac lineage cells necessary for cardiac tissue engineering and drug testing for cardiac toxicity. However, functional maturation of reprogrammed cardiomyocytes, which is of great importance for their regenerative potential and drug response, still remains challenging. In this study, we propose a novel electrode platform to promote direct cardiac reprogramming and improve the functionality of reprogrammed cardiac cells. Nonviral cardiac reprogramming was improved via a three-dimensional spheroid culture of chemically induced cardiomyocytes exposed to a small-molecule cocktail. A micropillar electrode array providing biphasic electrical pulses mimicking the heartbeat further enhanced maturation and electrophysiological properties of reprogrammed cardiac spheroids, leading to proper responses and increased sensitivity to drugs. On the basis of our results, we conclude that our device may have a wider application in the generation of functional cardiac cells for regenerative medicine and screening of novel drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Preparações Farmacêuticas , Eletrodos , Frequência Cardíaca , Miócitos Cardíacos
10.
Sci Rep ; 10(1): 4279, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152369

RESUMO

Continuous recording of intracellular activities in single cells is required for deciphering rare, dynamic and heterogeneous cell responses, which are missed by population or brief single-cell recording. Even if the field of intracellular recording is constantly proceeding, several technical challenges are still remained to conquer this important approach. Here, we demonstrate long-term intracellular recording by combining a vertical nanowire multi electrode array (VNMEA) with optogenetic stimulation to minimally disrupt cell survival and functions during intracellular access and measurement. We synthesized small-diameter and high-aspect-ratio silicon nanowires to spontaneously penetrate into single cells, and used light to modulate the cell's responsiveness. The light-induced intra- and extracellular activities of individual optogenetically-modified cells were measured simultaneously, and each cell showed distinctly different measurement characteristics according to the cell-electrode configuration. Intracellular recordings were achieved continuously and reliably without signal interference and attenuation over 24 hours. The integration of two controllable techniques, vertically grown nanowire electrodes and optogenetics, expands the strategies for discovering the mechanisms for crucial physiological and dynamic processes in various types of cells.


Assuntos
Potenciais de Ação , Fenômenos Fisiológicos Celulares , Eletrodos , Nanofios/química , Optogenética , Silício/química , Células HEK293 , Humanos
11.
Nanoscale ; 12(7): 4709-4718, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32049079

RESUMO

Elucidating cellular dynamics at the level of a single neuron and its associated role within neuronal circuits is essential for interpreting the complex nature of the brain. To investigate the operation of neural activity within its network, it is necessary to precisely manipulate the activation of each neuron and verify its propagation path via the synaptic connection. In this study, by exploiting the intrinsic physical and electrical advantages of a nanoelectrode, a vertical nanowire multi electrode array (VNMEA) is developed as a neuronal activation platform presenting the spatially confined effect on the intracellular space of individual cells. VNMEA makes a distinct difference between the interior and exterior cell potential and the current density, deriving the superior effects on activating Ca2+ responses compared to extracellular methods under the same conditions, with about 2.9-fold higher amplitude of Ca2+ elevation and a 2.6-fold faster recovery rate. Moreover, the synchronized propagation of evoked activities is shown in connected neurons implying cell-to-cell communications following the intracellular stimulation. The simulation and experimental consequences prove the outstanding property of temporal/spatial confinement of VNMEA-mediated intracellular stimulation to activate a single neuron and show its potential in localizing spiking neurons within neuronal populations, which may be utilized to reveal the connection and activation modalities of neural networks.


Assuntos
Potenciais de Ação , Sinalização do Cálcio , Comunicação Celular , Nanofios , Neurônios/metabolismo , Análise de Célula Única , Sinapses , Animais , Eletrodos , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
12.
Nat Commun ; 11(1): 805, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041949

RESUMO

Photolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source to achieve high resolution at the expense of cost efficiency. Here, we present a cost-effective near-field optical printing approach that uses metal patterns embedded in a flexible elastomer photomask with mechanical robustness. This technique generates sub-diffraction patterns that are smaller than 1/10th of the wavelength of the incoming light. It can be integrated into existing hardware and standard mercury lamp, and used for a variety of surfaces, such as curved, rough and defect surfaces. This method offers a higher resolution than common light-based printing systems, while enabling parallel-writing. We anticipate that it will be widely used in academic and industrial productions.

13.
ACS Appl Mater Interfaces ; 11(45): 42512-42519, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31633333

RESUMO

Since the discovery of graphene, layered transition metal dichalcogenides (TMDs) have been considered promising materials for applications in various fields because of their fascinating structural features and physical properties. Doping in semiconducting TMDs is essential for their practical application. In this regard, two-dimensional (2D) Si materials have emerged as a key component of 2D electronic, optics, sensing, and spintronic devices because of their complementary metal-oxide-semiconductor (CMOS) compatibility, high-quality oxide formation, moderated bandgap, and well-established doping techniques. Here, we report the tuning of the electronic properties of Si nanosheets (NSs) using a plasma-doping technique. Using this doping process, we fabricated p-n homojunction diodes and transistors with Si NSs. The estimated high ON/OFF ratio of ∼106 and field-effect hole mobility of 329 cm2 V-1 s-1 suggest a high crystal quality of the Si NSs. We also demonstrate vertically stacked heterostructured p-n junction diodes with MoS2, which exhibit rectifying properties and excellent light response.

14.
Nano Lett ; 19(4): 2291-2298, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860390

RESUMO

The real-time selective detection of disease-related markers in blood using biosensors has great potential for use in the early diagnosis of diseases and infections. However, this potential has not been realized thus far due to difficulties in interfacing the sensor with blood and achieving transparent circuits that are essential for detecting of target markers (e.g., protein, ions, etc.) in a complex blood environment. Herein, we demonstrate the real-time detection of a specific protein and ion in blood without a skin incision. Complementary metal-oxide-semiconductor technology was used to fabricate silicon micropillar array (SiMPA) electrodes with a height greater than 600 µm, and the surface of the SiMPA electrodes was functionalized with a self-assembling artificial peptide (SAP) as a receptor for target markers in blood, i.e., cholera toxin (CTX) and mercury(II) ions (Hg). The detection of CTX was investigated in both in vitro (phosphate-buffered saline and human blood serum, HBO model) and in vivo (mouse model) modes via impedance analysis. In the in vivo mode, the SiMPA pierces the skin, comes into contact with the blood system, and creates comprehensive circuits that include all the elements such as electrodes, blood, and receptors. The SiMPA achieves electrically transparent circuits and, thus, can selectively detect CTX in the blood in real time with a high sensitivity of 50 pM and 5 nM in the in vitro and in vivo modes, respectively. Mercury(II) ions can also be detected in both the in vitro and the in vivo modes by changing the SAP. The results illustrate that a robust sensor that can detect a variety of molecular species in the blood system in real time that will be helpful for the early diagnosis of disease and infections.


Assuntos
Biomarcadores/sangue , Técnicas Biossensoriais , Toxina da Cólera/isolamento & purificação , Mercúrio/isolamento & purificação , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Toxina da Cólera/sangue , Humanos , Limite de Detecção , Mercúrio/sangue , Camundongos , Semicondutores , Silício/química
15.
Nanotechnology ; 30(3): 035207, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452390

RESUMO

ZnO nanoparticles (NPs) of 4-5 nm, widely adopted as an electron transport layer (ETL) in quantum dot light emitting diodes (QD-LEDs), were synthesized using the solution-precipitation process. It is notable that synthesized ZnO NPs are highly degenerate intrinsic semiconductors and their donor concentration can be increased up to N D = 6.9 × 1021 cm-3 by annealing at 140 °C in air. An optical bandgap increase of as large as 0.16-0.33 eV by degeneracy is explained well by the Burstein-Moss shift. In order to investigate the influence of intrinsic defects of ZnO NP ETLs on the performance of QD-LED devices without a combined annealing temperature between ZnO NP ETLs and the emissive QD layer, pre-annealed ZnO NPs at 60 °C, 90 °C, 140 °C, and 180 °C were spin-coated on the annealed QD layer without further post-annealing. As the annealing temperature increases from 60 °C to 180 °C, the defect density related to oxygen vacancy (V O) in ZnO NPs is reduced from 34.4% to 17.8%, whereas the defect density of interstitial Zn (Zni) is increased. Increased Zni reduces the width (W) of the depletion region from 0.21 to 0.12 nm and lowers the Schottky barrier (ФB) between ZnO NPs and the Al electrode from 1.19 to 0.98 eV. We reveal for the first time that carrier conduction between ZnO NP ETLs and the Al electrode is largely affected by the concentration of Zni above the conduction band minimum, and effectively described by space charge limited current and trap charge limited current models.

16.
Nat Commun ; 9(1): 5412, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575737

RESUMO

In-situ high-pressure synchrotron X-ray powder diffraction studies up to 21 GPa of CVD-grown silicon 2D-nanosheets establish that the structural phase transitions depend on size and shape. For sizes between 9.3(7) nm and 15.2(8) nm we observe an irreversible phase transition sequence from I (cubic) → II (tetragonal) → V (hexagonal) during pressure increase and during decompression below 8 GPa the emergence of an X-ray amorphous phase. High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and atomic force microscopy (AFM) images of this X-ray amorphous phase reveal the formation of significant numbers of 1D nanowires with aspect ratios > 10, which are twinned and grow along the <111> direction. We discovered a reduction of dimensionality under pressure from a 2D morphology to a 1D wire in a material with a diamond structure. MD simulations indicate the reduction of thermal conductivity in such nanowires.

17.
Nano Lett ; 18(2): 934-940, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29337567

RESUMO

Ultrafast electrically driven nanoscale light sources are critical components in nanophotonics. Compound semiconductor-based light sources for the nanophotonic platforms have been extensively investigated over the past decades. However, monolithic ultrafast light sources with a small footprint remain a challenge. Here, we demonstrate electrically driven ultrafast graphene light emitters that achieve light pulse generation with up to 10 GHz bandwidth across a broad spectral range from the visible to the near-infrared. The fast response results from ultrafast charge-carrier dynamics in graphene and weak electron-acoustic phonon-mediated coupling between the electronic and lattice degrees of freedom. We also find that encapsulating graphene with hexagonal boron nitride (hBN) layers strongly modifies the emission spectrum by changing the local optical density of states, thus providing up to 460% enhancement compared to the gray-body thermal radiation for a broad peak centered at 720 nm. Furthermore, the hBN encapsulation layers permit stable and bright visible thermal radiation with electronic temperatures up to 2000 K under ambient conditions as well as efficient ultrafast electronic cooling via near-field coupling to hybrid polaritonic modes under electrical excitation. These high-speed graphene light emitters provide a promising path for on-chip light sources for optical communications and other optoelectronic applications.

18.
Nano Lett ; 17(8): 4781-4786, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28691487

RESUMO

Monolayer MoS2, among many other transition metal dichalcogenides, holds great promise for future applications in nanoelectronics and optoelectronics due to its ultrathin nature, flexibility, sizable band gap, and unique spin-valley coupled physics. However, careful study of these properties at low temperature has been hindered by an inability to achieve low-temperature Ohmic contacts to monolayer MoS2, particularly at low carrier densities. In this work, we report a new contact scheme that utilizes cobalt (Co) with a monolayer of hexagonal boron nitride (h-BN) that has the following two functions: modifies the work function of Co and acts as a tunneling barrier. We measure a flat-band Schottky barrier of 16 meV, which makes thin tunnel barriers upon doping the channels, and thus achieve low-T contact resistance of 3 kΩ.µm at a carrier density of 5.3 × 1012/cm2. This further allows us to observe Shubnikov-de Haas oscillations in monolayer MoS2 at much lower carrier densities compared to previous work.

19.
Rev Sci Instrum ; 88(5): 054902, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28571432

RESUMO

In this paper, the T-bridge method is extended to measure the thermal properties of two-dimensional nanomaterials. We present an analysis of the measureable positions, width, and thermal resistance of two-dimensional materials. For verification purposes, the thermal conductivity of a SiO2 nanoribbon was measured. To enhance the thermal contact between the nanoribbon and the heater in the setup, the nanoribbon was dipped into either isopropanol or water in order to promote a sticking force. Also, focused ion beam deposition was used to deposit the nanoribbon onto the contact. The thermal conductivities of all three cases were identical, showing that water dipping could be used to enhance the thermal contact. Due to the simple structure of this method and the analysis provided herein, the T-bridge method can be widely used for measuring the thermal conductivity of two-dimensional materials.

20.
Nat Commun ; 8: 15722, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28569767

RESUMO

Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...