Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 33(11): 2631-2641, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39144189

RESUMO

Nootkatone (NK) is an aromatic compound derived from grapefruit. This study aimed to investigate the inhibitory effect of NK on lipid accumulation and its underlying mechanism in adipocytes. NK effectively inhibited adipogenic lipid storage by downregulating C/EBPα and PPARγ, while upregulating KLF2, an early inhibitory factor, downregulating C/EBPß, an early promoting factor. In addition, NK inhibited the JAK2-STAT signaling pathway by decreasing the phosphorylation of STAT3 and STAT5 in the early adipogenic stage. NK significantly reduced ROS generation while elevating antioxidant enzymes such as catalase and glutathione peroxidase. It activated NRF2-HO-1 signaling, responsible for antioxidant response, by increasing protein levels. Furthermore, NK regulated adipokines, increasing adiponectin and visfatin, while downregulating resistin. Collectively, NK inhibited adipogenic lipid accumulation through the suppression of JAK2-STAT signaling and the augmentation of antioxidant response. This study highlights the potential of NK as an edible agent to alleviate obesity and its associated metabolic diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01522-2.

2.
Foods ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38998562

RESUMO

In this study, we investigated the effects of whey protein hydrolysate (WPH) fermented with Lactobacillus brevis on sleep behavior and GABAergic mechanisms in rodent models. Fermentation converted the glutamate in WPH to high (3.15 ± 0.21 mg/mL) levels of γ-aminobutyric acid (GABA). Fermented WPH (WP-SF) enhanced sleep duration in mice by increasing GABA content in the brain. The increase in sleep duration induced by WP-SF resulted from an increase in delta wave activity during non-rapid eye movement sleep, and its sleep-promoting effect in a caffeine-induced insomnia model was characterized by an increase in delta waves. WP-SF increased GABAergic receptors at both mRNA and protein levels. Cotreatment with GABAA receptor antagonists abolished the sleep-promoting effects of WP-SF, indicating that WP-SF shares binding sites with antagonists on GABAA receptors. Collectively, WP-SF effectively increased sleep duration by enhancing delta wave activity through GABAergic activation; thus, it is suggested as a functional food-grade ingredient for promoting sleep.

3.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998634

RESUMO

The objective of this study was to examine the impact of lactitol on constipation caused by loperamide in Sprague Dawley rats, with a particular emphasis on its underlying mechanisms and potential health advantages. The lactitol effectively improved fecal parameters, intestinal tissue structure, and the expression of constipation-related gene expression and proteins. Lactitol alleviated fecal weight and water content altered by loperamide and enhanced gastrointestinal transit. The administration also restored mucosal and muscular layer thickness. Mechanistically, lactitol upregulated the mRNA expression and/or protein levels of mucins (MUC2 and MUC4), occludin, claudin-1, and zonula occludens, indicating improved intestinal barrier function. Lactitol positively regulated the composition of cecal microbiota, leading to an increased relative abundance of Bifidobacterium, Lactobacillus, and Romboutsia. Conversely, lactitol decreased the relative abundance of Prevotella, Aerococcus, Muribaculum, Blautia, and Ruminococcus. This study demonstrated the potential of lactitol to relieve constipation by modulating the gut microbiota. These findings suggest that lactitol is an alternative to traditional laxatives and has potential as a health-promoting food sweetener.

4.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

5.
J Agric Food Chem ; 72(6): 2977-2988, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300259

RESUMO

This study investigated the effects of Lactobacillus brevis-fermented gamma-aminobutyric acid (LB-GABA) on depressive and anxiety-like behaviors with the underlying molecular mechanism in a chronic stress model of BALB/c mice. LB-GABA attenuates both neuronal cell death and the increase of monoamine oxidase activity induced by hydrogen peroxide. Behavioral tests revealed that GABA significantly increased sucrose preference and reduced immobility time in both tail suspension and forced swimming tests. LB-GABA increased exploration of the open arms in the elevated plus maze and restored activity in the open field. Moreover, LB-GABA lowered stress hormone and inflammatory mediator levels. Mechanistically, LB-GABA increased protein levels of BDNF and TrkB, activating downstream targets (AKT, ERK, and CREB), crucial for neuronal survival and plasticity. Furthermore, LB-GABA protected hippocampal neurons from stress-induced cell death and increased serotonin and dopamine levels. Overall, LB-GABA has the potential to alleviate stress-induced depression and anxiety-like symptoms and neuroinflammation by activating the BDNF-TrkB signaling pathway.


Assuntos
Depressão , Levilactobacillus brevis , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Tropomiosina , Camundongos Endogâmicos BALB C , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismo , Hipocampo , Modelos Animais de Doenças , Estresse Psicológico/tratamento farmacológico
6.
J Dairy Sci ; 107(5): 2620-2632, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38101744

RESUMO

This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.


Assuntos
Peróxido de Hidrogênio , Fármacos Neuroprotetores , Animais , Peróxido de Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Glutamina/farmacologia , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacologia , Isoleucina/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/farmacologia , Soro do Leite/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
7.
Foods ; 12(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38137233

RESUMO

In this study, the potential of whey protein hydrolysate (WPH) and treadmill exercise to prevent cognitive decline was investigated, along with their neuroprotective mechanisms. Cognitive dysfunction was induced in mice with 1 mg/kg of scopolamine, followed by the administration of WPH at 100 and 200 mg/kg and/or treadmill exercise at 15 m/min for 30 min five days per week. Both WPH administration and treadmill exercise significantly improved the memory of mice with scopolamine-induced cognitive impairment, which was attributed to several key mechanisms, including a reduction in oxidative stress based on decreased levels of reactive oxygen species and malondialdehyde in the brain tissue and an increase in acetylcholine by increasing choline acyltransferase and decreasing acetylcholine esterase levels. Exercise and WPH also exerted neuroprotective effects by inhibiting the hyperphosphorylation of tau proteins, enhancing the expression of the brain-derived neurotrophic factor, and inhibiting apoptosis by reducing the Bax/Bcl2 ratio in conjunction with the downregulation of the mitogen-activated protein kinase pathway. Moreover, the impact of WPH and treadmill exercise extended to the gut microbiome, suggesting a potential link with cognitive improvement. These findings suggest that both WPH intake and treadmill exercise are effective strategies for mitigating cognitive impairment, providing promising avenues for treating neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA