Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475483

RESUMO

Inorganic phosphate (Pi) homeostasis plays an important role in plant growth and abiotic stress tolerance. Several MYB-CC transcription factors involved in Pi homeostasis have been identified in rice (Oryza sativa). PHOSPHATE STARVATION RESPONSE-LIKE 7 (PHL7) is a class II MYC-CC protein, in which the MYC-CC domain is located at the N terminus. In this study, we established that OsPHL7 is localized to the nucleus and that the encoding gene is induced by Pi deficiency. The Pi-responsive genes and Pi transporter genes are positively regulated by OsPHL7. The overexpression of OsPHL7 enhanced the tolerance of rice plants to Pi starvation, whereas the RNA interference-based knockdown of this gene resulted in increased sensitivity to Pi deficiency. Transgenic rice plants overexpressing OsPHL7 produced more roots than wild-type plants under both Pi-sufficient and Pi-deficient conditions and accumulated more Pi in the shoots and roots. In addition, the overexpression of OsPHL7 enhanced rice tolerance to salt stress. Together, these results demonstrate that OsPHL7 is involved in the maintenance of Pi homeostasis and enhances tolerance to Pi deficiency and salt stress in rice.

2.
Genes Genomics ; 46(3): 367-378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095842

RESUMO

BACKGROUND: Secondary metabolites such as benzylisoquinoline alkaloids (BIA) have attracted considerable attention because of their pharmacological properties and potential therapeutic applications. Methyltransferases (MTs) can add methyl groups to alkaloid molecules, altering their physicochemical properties and bioactivity, stability, solubility, and recognition by other cellular components. Five types of O-methyltransferases and two types of N-methyltransferases are involved in BIA biosynthesis. OBJECTIVE: Since MTs may be the source for the discovery and development of novel biomedical, agricultural, and industrial compounds, we performed extensive molecular and phylogenetic analyses of O- and N-methyltransferases in BIA-producing plants. METHODS: MTs involved in BIA biosynthesis were isolated from transcriptomes of Berberis koreana and Caulophyllum robustum. We also mined the methyltransferases of Coptis japonica, Papaver somniferum, and Nelumbo nucifera from the National Center for Biotechnology Information protein database. Then, we analyzed the functional motifs and phylogenetic analysis. RESULT: We mined 42 O-methyltransferases and 8 N-methyltransferases from the five BIA-producing plants. Functional motifs for S-adenosyl-L-methionine-dependent methyltransferases were retained in most methyltransferases, except for the three O-methyltransferases from N. nucifera. Phylogenetic analysis revealed that the methyltransferases were grouped into four clades, I, II, III and IV. The clustering patterns in the phylogenetic analysis suggested a monophyletic origin of methyltransferases and gene duplication within species. The coexistence of different O-methyltransferases in the deep branch subclade might support some cases of substrate promiscuity. CONCLUSIONS: Methyltransferases may be a source for the discovery and development of novel biomedical, agricultural, and industrial compounds. Our results contribute to further understanding of their structure and reaction mechanisms, which will require future functional studies.


Assuntos
Alcaloides , Benzilisoquinolinas , Metiltransferases/genética , Metiltransferases/metabolismo , Filogenia , Alcaloides/metabolismo , Plantas/metabolismo
3.
Plants (Basel) ; 12(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176972

RESUMO

Astragalus membranaceus, the major components of which are saponins, flavonoids, and polysaccharides, has been established to have excellent pharmacological activity. After ginseng, it is the second most used medicinal plant. To examine the utility of A. membranaceus as a sprout crop for plant factory cultivation, we sought to establish a functional substance control model by comparing the transcriptomes of sprouts grown in sterile, in vitro culture using LED light sources. Having sown the seeds of A. membranaceus, these were exposed to white LED light (continuous spectrum), red LED light (632 nm, 1.58 µmol/m2/s), or blue LED light (465 nm, 1.44 µmol/m2/s) and grown for 6 weeks; after which, the samples were collected for transcriptome analysis. Scanning electron microscopy analysis of cell morphology in plants exposed to the three light sources revealed that leaf cell size was largest in those plants exposed to red light, where the thickest stem was observed in plants exposed to white light. The total number of genes in A. membranaceus spouts determined via de novo assembly was 45,667. Analysis of differentially expressed genes revealed that for the comparisons of blue LED vs. red LED, blue LED vs. white LED, and red LED vs. white LED, the numbers of upregulated genes were 132, 148, and 144, respectively. Binding, DNA integration, transport, phosphorylation, DNA biosynthetic process, membrane, and plant-type secondary cell wall biogenesis were the most enriched in the comparative analysis of blue LED vs. red LED, whereas Binding, RNA-templated DNA biosynthetic process, DNA metabolic process, and DNA integration were the most enriched in the comparative analysis of blue vs. white LED, and DNA integration and resolution of meiotic recombination intermediates were the most enrichment in the comparison between red LED vs. white LED. The GO term associated with flavonoid biosynthesis, implying the functionality of A. membranaceus, was the flavonoid biosynthetic process, which was enriched in the white LED vs. red LED comparison. The findings of this study thus indicate that different LED light sources can differentially influence the transcriptome expression pattern of A. membranaceus sprouts, which can provide a basis for establishing a flavonoid biosynthesis regulation model and thus, the cultivation of high-functional Astragalus sprouts.

4.
Plants (Basel) ; 12(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37050109

RESUMO

Caulophyllum robustum, commonly named Asian blue cohosh, is a perennial herb in the family Berberidaceae. It has traditionally been used for folk medicine in China. We isolated berberine from the leaves, stem, roots, and fruits of C. robustum, and this is the first report on berberine in this species. Transcriptome analysis was conducted for the characterization of berberine biosynthesis genes in C. robustum, in which, all the genes for berberine biosynthesis were identified. From 40,094 transcripts, using gene ontology (GO) analysis, 26,750 transcripts were assigned their functions in the categories of biological process, molecular function, and cellular component. In the analysis of genes expressed in different tissues, the numbers of genes in the categories of intrinsic component of membrane and transferase activity were up-regulated in leaves versus stem. The berberine synthesis genes in C. robustum were characterized by phylogenetic analysis with corresponding genes from other berberine-producing species. The co-existence of genes from different plant families in the deepest branch subclade implies that the differentiation of berberine synthesis genes occurred early in the evolution of berberine-producing plants. Furthermore, the copy number increment of the berberine synthesis genes was detected at the species level.

5.
Plants (Basel) ; 11(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297700

RESUMO

Berberine and berbamine are bioactive compounds of benzylisoquinoline alkaloids (BIAs) present in Berberis species. The contents of berbamine are 20 times higher than berberine in leaf tissues in three closely related species: Berberis koreana, B. thunbergii and B. amurensis. This is the first report on the quantification of berberine compared to the berbamine in the Berberis species. Comparative transcriptome analyses were carried out with mRNAs from the leaf tissues of the three-species. The comparison of the transcriptomes of B. thunbergii and B. amurensis to those of B. koreana, B. thunbergii showed a consistently higher number of differentially expressed genes than B. amurensis in KEGG and DEG analyses. All genes encoding enzymes involved in berberine synthesis were identified and their expressions were variable among the three species. There was a single copy of CYP80A/berbamunine synthase in B. koreana. Methyltransferases and cytochrome P450 mono-oxidases (CYPs) are key enzymes for BIA biosynthesis. The current report contains the copy numbers and other genomic characteristics of the methyltransferases and CYPs in Berberis species. Thus, the contents of the current research are valuable for molecular characterization for the medicinal utilization of the Berberis species.

6.
Genes Genomics ; 44(10): 1231-1242, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35951153

RESUMO

BACKGROUND: The family Columbidae is known as the pigeon family and contains approximately 351 species and 50 genera. Compared to the wealth of biological and genomic information on these Columba livia var. domesteca, information on Columba rupestris and Streptopelia orientalis has been rather limited. The C. rupestris population size is decreasing in Korea. OBJECTIVES: Whole-genome sequencing and identification of population characterization of each species based genome variation on 9 Korean pigeon and dove samples, namely, six hill pigeon (C. rupestris), one rock pigeon (C. livia var. domestica) and two oriental turtle dove (S. orientalis) samples. RESULTS: The whole genome of 9 genotypes were sequenced and mapped to the C. livia reference genome. Sequence alignment showed over 96% identity in C. rupestris and 94% identity in S. orientalis to the reference genome (GenBank assembly accession: GCA_001887795.1). Sequence variations, including single nucleotide polymorphisms (SNPs), insertions and deletions (InDels), and structural variations, revealed that intergenus (Columba vs. Streptopelia) variations were approximately four times higher than intragenus variations (C. livia vs. C. rupestris). Of the two Columba species, C. livia var. domestica is closer to S. orientalis than C. rupestris. Pairwise sequentially Markovian coalescent (PSMC) demographic history analysis revealed that the three species underwent a common population bottleneck between 105 and 120 Kya; since then, the effective population sizes of the rock pigeon and oriental turtle dove have increased. CONCLUSION: The effective population size of the hill pigeon, an Endangered Species of Grade II in Korea, has increased slowly from the second severe bottleneck that occurred approximately 0.5-1.4 × 104 years ago. Our results showed no relationship between copy number variation in the Norrie disease protein (NDP) regulatory regions and plumage color patterns. We report the first comparative analysis of three pigeon genomes.


Assuntos
Columbidae , Variações do Número de Cópias de DNA , Animais , Columbidae/genética , Demografia , Genoma/genética , Genótipo
7.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889464

RESUMO

The annual herb Euphorbia maculata L. produces anti-inflammatory and biologically active substances such as triterpenoids, tannins, and polyphenols, and it is used in traditional Chinese medicine. Of these bioactive compounds, terpenoids, also called isoprenoids, are major secondary metabolites in E. maculata. Full-length cDNA sequencing was carried out to characterize the transcripts of terpenoid biosynthesis reference genes and determine the copy numbers of their isoforms using PacBio SMRT sequencing technology. The Illumina short-read sequencing platform was also employed to identify differentially expressed genes (DEGs) in the secondary metabolite pathways from leaves, roots, and stems. PacBio generated 62 million polymerase reads, resulting in 81,433 high-quality reads. From these high-quality reads, we reconstructed a genome of 20,722 genes, in which 20,246 genes (97.8%) did not have paralogs. About 33% of the identified genes had two or more isoforms. DEG analysis revealed that the expression level differed among gene paralogs in the leaf, stem, and root. Whole sets of paralogs and isoforms were identified in the mevalonic acid (MVA), methylerythritol phosphate (MEP), and terpenoid biosynthesis pathways in the E. maculata L. The nucleotide information will be useful for identifying orthologous genes in other terpenoid-producing medicinal plants.


Assuntos
Euphorbia , DNA Complementar/genética , Euphorbia/genética , Euphorbia/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Terpenos/metabolismo , Transcriptoma/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-35367896

RESUMO

In crustaceans, G protein-coupled receptors (GPCRs) are the largest transmembrane receptor family and function by mediating various environmental stimuli in cells. Understanding GPCR signaling is crucial to better understanding of crustacean endocrinology. GPCRs evolved from early eukaryotes, and genome-wide identification of GPCRs in a particular taxon can provide insight into evolutionary tendencies and adaptive strategies of GPCR response to environmental stimuli. Here, we identified 194 full-length GPCR genes in the water flea Daphnia magna that can be divided into five distinct classes (A, B, C, F, and other). A strong orthologous relationship for amine, neuropeptide, and opsin receptors was found in the phylogenetic comparison of D. magna GPCRs to those of humans and two well-known insects (Drosophila melanogaster and Solenopsis invicta). Our results based on phylogenetic relationships suggest that most GPCRs subfamilies have undergone sporadic evolutionary processes for adaptation to environmental pressures. Despite the dynamics of GPCR evolution, some GPCRs are highly conserved between species. This study provides a better understanding of the evolution of GPCRs and expands our knowledge of the potential physiological mechanisms in D. magna in response to various environmental stimuli.


Assuntos
Cladocera , Animais , Cladocera/genética , Daphnia/genética , Drosophila melanogaster , Filogenia , Receptores Acoplados a Proteínas G/genética
9.
Front Genet ; 13: 805347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281824

RESUMO

In cultivated plants, shoot morphology is an important factor that influences crop economic value. However, the effects of gene expression patterns on shoot morphology are not clearly understood. In this study, the molecular mechanism behind shoot morphology (including leaf, stem, and node) was analyzed using RNA sequencing to compare weedy (creeper) and cultivar (stand) growth types obtained in F7 derived from a cross of wild and cultivated soybeans. A total of 12,513 (in leaves), 14,255 (in stems), and 11,850 (in nodes) differentially expressed genes were identified among weedy and cultivar soybeans. Comparative transcriptome and expression analyses revealed 22 phytohormone-responsive genes. We found that GIBBERELLIN 2-OXIDASE 8 (GA2ox), SPINDLY (SPY), FERONIA (FER), AUXIN RESPONSE FACTOR 8 (ARF8), CYTOKININ DEHYDROGENASE-1 (CKX1), and ARABIDOPSIS HISTIDINE KINASE-3 (AHK3), which are crucial phytohormone response genes, were mainly regulated in the shoot of weedy and cultivar types. These results indicate that interactions between phytohormone signaling genes regulate shoot morphology in weedy and cultivar growth type plants. Our study provides insights that are useful for breeding and improving crops to generate high-yield soybean varieties.

10.
Plant Direct ; 6(1): e374, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35028494

RESUMO

Plants have evolved sophisticated defense systems to enhance drought tolerance. These include the microRNA (miRNA) group of small noncoding RNAs that act as post-transcriptional regulators; however, details of the mechanisms by which they confer drought tolerance are not well understood. Here, we show that osa-MIR171f, a member of osa-MIR171 gene family, is mainly expressed in response to drought stress and regulates the transcript levels of SCARECROW-LIKE6-I (SCL6-I) and SCL6-II in rice (Oryza sativa). The SCL6 genes are known to be involved in shoot branching and flag leaf morphology. Osa-MIR171f-overexpressing (osa-MIR171f-OE) transgenic plants showed reduced drought symptoms compared with non-transgenic (NT) control plants under both field drought and polyethylene glycol (PEG)-mediated dehydration stress conditions. Transcriptome analysis of osa-MIR171f-OE plants and osa-mir171f-knockout (K/O) lines generated by clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) revealed that osa-mature-miR171a-f (osa-miR171) regulates the expression of flavonoid biosynthesis genes, consequently leading to drought tolerance. This upregulation in the osa-MIR171f-OE plants, which did not occur in NT control plants, was observed under both normal and drought conditions. Our findings indicate that osa-miR171 plays a role in drought tolerance by regulating SCL6-I and SCL6-II transcript levels.

11.
Plant Signal Behav ; 16(12): 1973703, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34839799

RESUMO

Selaginella tamariscina is a lycophyta species that survives under extremely dry conditions via the mechanism of resurrection. This phenomenon involves the regulation of numerous genes that play vital roles in desiccation tolerance and subsequent rehydration. To identify resurrection-related genes, we analyzed the transcriptome between dehydration conditions and rehydration conditions of S. tamariscina. The de novo assembly generated 124,417 transcripts with an average size of 1,000 bp and 87,754 unigenes. Among these genes, 1,267 genes and 634 genes were up and down regulated by rehydration compared to dehydration. To understand gene function, we annotated Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The unigenes encoding early light-inducible protein (ELIP) were down-regulated, whereas pentatricopeptide repeat-containing protein (PPR), late embryogenesis abundant proteins (LEA), sucrose nonfermenting protein (SNF), trehalose phosphate phosphatase (TPP), trehalose phosphate synthase (TPS), and ABC transporter G family (ABCG) were significantly up-regulated in response to rehydration conditions by differentially expressed genes (DEGs) analysis. Several studies provide evidence that these genes play a role in stress environment. The ELIP and PPR genes are involved in chloroplast protection during dehydration and rehydration. LEA, SNF, and trehalose genes are known to be oxidant scavengers that protect the cell structure from the deleterious effect of drought. TPP and TPS genes were found in the starch and sucrose metabolism pathways, which are essential sugar-signaling metabolites regulating plant metabolism and other biological processes. ABC-G gene interacts with abscisic acid (ABA) phytohormone in the stomata opening during stress conditions. Our findings provide valuable information and candidate resurrection genes for future functional analysis aimed at improving the drought tolerance of crop plants.


Assuntos
Selaginellaceae , Ácido Abscísico/metabolismo , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Selaginellaceae/metabolismo , Transcriptoma/genética
12.
Sci Rep ; 11(1): 21094, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702863

RESUMO

Faba bean (Vicia faba L.), a globally important grain legume providing a stable source of dietary protein, was one of the earliest plant cytogenetic models. However, the lack of draft genome annotations and unclear structural information on mRNA transcripts have impeded its genetic improvement. To address this, we sequenced faba bean leaf transcriptome using the PacBio single-molecule long-read isoform sequencing platform. We identified 28,569 nonredundant unigenes, ranging from 108 to 9669 bp, with a total length of 94.5 Mb. Many unigenes (3597, 12.5%) had 2-20 isoforms, indicating a highly complex transcriptome. Approximately 96.5% of the unigenes matched sequences in public databases. The predicted proteins and transcription factors included NB-ARC, Myb_domain, C3H, bHLH, and heat shock proteins, implying that this genome has an abundance of stress resistance genes. To validate our results, we selected WCOR413-15785, DHN2-12403, DHN2-14197, DHN2-14797, COR15-14478, and HVA22-15 unigenes from the ICE-CBF-COR pathway to analyze their expression patterns in cold-treated samples via qRT-PCR. The expression of dehydrin-related genes was induced by cold stress. The assembled data provide the first insights into the deep sequencing of full-length RNA from faba bean at the single-molecule level. This study provides an important foundation to improve gene modeling and protein prediction.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Proteínas de Plantas , Transcriptoma , Vicia faba , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Análise de Sequência de DNA , Vicia faba/genética , Vicia faba/metabolismo
13.
Genes Genomics ; 43(12): 1403-1411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591233

RESUMO

BACKGROUND: Genome wide association studies (GWAS) have been widely used to identify QTLs underlying quantitative traits in humans and animals, and they have also become a popular method of mapping QTLs in many crops, including maize. Advances in high-throughput genotyping technologies enable construction of high-density linkage maps using SNP markers. OBJECTIVES: High-density genetic mapping must precede to find molecular markers associated with a particular trait. The objectives of this study were to (1) construct a high-density linkage map using SNP markers and (2) detect the QTLs for grain yield and quality related traits of the Mo17/KW7 RIL population. METHODS: In this study, two parental lines, Mo17 (normal maize inbred line) and KW7 (waxy inbred line) and 80 F7:8 lines in the Mo17/KW7 RIL population were genotyped using the MaizeSNP50 BeadChip, an Illumina BeadChip array of 56,110 maize SNPs. Marker integration and detection of QTLs was performed using the inclusive composite interval mapping (ICIM) method within the QTL IciMapping software. RESULTS: This study was genotyped using the Illumina MaizeSNP50 BeadChip for maize Mo17/KW7 recombinant inbred line (RIL) population. The 2904 SNP markers were distributed along all 10 maize chromosomes. The total length of the linkage map was 3553.7 cm, with an average interval of 1.22 cm between SNPs. A total of 18 QTLs controlling eight traits were detected in the Mo17/KW7 RIL population. Three QTLs for plant height (PH) were detected on chromosomes 4 and 8 and showed from 16.01% (qPH8) to 19.85% (qPH4a) of phenotypic variance. Five QTLs related to ear height (EH) were identified on chromosomes 3, 4, and 6 and accounted for 3.79% (qEH6) to 27.57% (qEH4b) of phenotypic variance. Five QTLs related to water content (WC) on chromosomes 1, 4, 8, and 9 accounted for 9.55% (qWC8b) to 23.30% (qWC4) of phenotypic variance. One QTL (qAC9) relating to amylose content (AC) on chromosome 9 showed 82.10% of phenotypic variance. CONCLUSIONS: The high-density linkage map and putative QTLs of the maize RIL population detected in this study can be effectively utilized in waxy and normal maize breeding programs to facilitate the selection process through marker-assisted selection (MAS) breeding programs.


Assuntos
Grão Comestível/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/genética , Grão Comestível/crescimento & desenvolvimento , Melhoramento Vegetal , Característica Quantitativa Herdável , Zea mays/crescimento & desenvolvimento
14.
Plants (Basel) ; 10(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203474

RESUMO

Berberis koreana is a medicinal plant containing berberine, which is a bioactive compound of the benzylisoquinoline alkaloid (BIA) class. BIA is widely used in the food and drug industry for its health benefits. To investigate the berberine biosynthesis pathway, gene expression analysis was performed in leaves, flowers, and fruits at different stages of growth. This was followed by full-length cDNA sequencing analysis using the PacBio sequencer platform to determine the number of isoforms of those expressed genes. We identified 23,246 full-length unigenes, among which 8479 had more than one isoform. The number of isoforms ranged between two to thirty-one among all genes. Complete isoform analysis was carried out on the unigenes encoding BIA synthesis. Thirteen of the sixteen genes encoding enzymes for berberine synthesis were present in more than one copy. This demonstrates that gene duplication and translation into isoforms may contribute to the functional specificity of the duplicated genes and isoforms in plant alkaloid synthesis. Our study also demonstrated the streamlining of berberine biosynthesis via the absence of genes for enzymes of other BIAs, but the presence of all the genes for berberine biosynthesize in B. koreana. In addition to genes encoding enzymes for the berberine biosynthesis pathway, the genes encoding enzymes for other BIAs were not present in our dataset except for those encoding corytuberine synthase (CTS) and berbamunine synthase (BS). Therefore, this explains how B. koreana produces berberine by blocking the pathways leading to other BIAs, effectively only allowing the pathway to lead to berberine synthesis.

15.
Genomics Inform ; 19(2): e19, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34261303

RESUMO

Plant height is an important component of plant architecture and significantly affects crop breeding practices and yield. We studied DNA variations derived from F5 recombinant inbred lines (RILs) with 96.8% homozygous genotypes. Here, we report DNA variations between the normal and dwarf members of four lines harvested from a single seed parent in an F6 RIL population derived from a cross between Glycine max var. Peking and Glycine soja IT182936. Whole genome sequencing was carried out, and the DNA variations in the whole genome were compared between the normal and dwarf samples. We found a large number of DNA variations in both the dwarf and semi-dwarf lines, with one single nucleotide polymorphism (SNP) per at least 3.68 kb in the dwarf lines and 1 SNP per 11.13 kb of the whole genome. This value is 2.18 times higher than the expected DNA variation in the F6 population. A total of 186 SNPs and 241 SNPs were discovered in the coding regions of the dwarf lines 1282 and 1303, respectively, and we discovered 33 homogeneous nonsynonymous SNPs that occurred at the same loci in each set of dwarf and normal soybean. Of them, five SNPs were in the same positions between lines 1282 and 1303. Our results provide important information for improving our understanding of the genetics of soybean plant height and crop breeding. These polymorphisms could be useful genetic resources for plant breeders, geneticists, and biologists for future molecular biology and breeding projects.

16.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916772

RESUMO

Global population growth and climate change are posing increasing challenges to the production of a stable crop supply using current agricultural practices. The generation of genetically modified (GM) crops has contributed to improving crop stress tolerance and productivity; however, many regulations are still in place that limit their commercialization. Recently, alternative biotechnology-based strategies, such as gene-edited (GE) crops, have been in the spotlight. Gene-editing technology, based on the clustered regularly interspaced short palindromic repeats (CRISPR) platform, has emerged as a revolutionary tool for targeted gene mutation, and has received attention as a game changer in the global biotechnology market. Here, we briefly introduce the concept of upstream open reading frames (uORFs) editing, which allows for control of the translation of downstream ORFs, and outline the potential for enhancing target gene expression by mutating uORFs. We discuss the current status of developing stress-tolerant crops, and discuss uORF targets associated with salt stress-responsive genes in rice that have already been verified by transgenic research. Finally, we overview the strategy for developing GE crops using uORF editing via the CRISPR-Cas9 system. A case is therefore made that the mutation of uORFs represents an efficient method for developing GE crops and an expansion of the scope of application of genome editing technology.


Assuntos
Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Edição de Genes , Fases de Leitura Aberta , Plantas Geneticamente Modificadas/genética
17.
Genomics Inform ; 19(4): e45, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35172475

RESUMO

Brassica napus is the third most important oilseed crop in the world; however, in Korea, it is greatly affected by cold stress, limiting seed growth and production. Plants have developed specific stress responses that are generally divided into three categories: cold-stress signaling, transcriptional/post-transcriptional regulation, and stress-response mechanisms. Large numbers of functional and regulatory proteins are involved in these processes when triggered by cold stress. Here, our objective was to investigate the different genetic factors involved in the cold-stress responses of B. napus. Consequently, we treated the Korean B. napus cultivar Naehan at the 4-week stage in cold chambers under different conditions, and RNA and cDNA were obtained. An in silico analysis included 80 cold-responsive genes downloaded from the National Center for Biotechnology Information (NCBI) database. Expression levels were assessed by reverse transcription polymerase chain reaction, and 14 cold-triggered genes were identified under cold-stress conditions. The most significant genes encoded zinc-finger proteins (33.7%), followed by MYB transcription factors (7.5%). In the future, we will select genes appropriate for improving the cold tolerance of B. napus.

18.
Mitochondrial DNA B Resour ; 5(1): 572-573, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33366652

RESUMO

In this study, we report the complete chloroplast (cp) genome of Thelypteris interrupta, a fern member, and comparative analysis with its related family members. The cp genome was 155,983 bp long, with a typical quadripartite structure including a pair of inverted repeat regions (25,614 bp) separated by a large (82,769 bp) and small (21,986 bp) single-copy (SC) region. The genome encodes a total of 88 protein-coding genes, 35 tRNA genes, and 8 rRNA genes. Additionally, we identified 86 RNA editing sites in 52 genes; most of the substitution was U to C (52 sites), while C to U conversion occurred in 34 positions. The phylogenetic analysis strongly supported the relationship of T. interrupta with Ampelopteris prolifera and Christella appendiculata of Thelypteridoideae family.

19.
Genomics Inform ; 18(3): e29, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33017873

RESUMO

Maize seed pigmentation is one of the important issue to develop maize seed breeding. The differently gene expression was characterized and compared for three inbred lines, such as the pigment accumulated seed (CM22) and non-pigmented seed (CM5 and CM19) at 10 days after pollination. We obtained a total of 63,870, 82,496, and 54,555 contigs by de novo assembly to identify gene expression in the CM22, CM5, and CM19, respectably. In differentially expressed gene analysis, it was revealed that 7,044 genes were differentially expressed by at least two-fold, with 4,067 upregulated in colored maize inbred lines and 2,977 upregulated in colorless maize inbred lines. Of them,18 genes were included to the anthocyanin biosynthesis pathways, while 15 genes were upregulated in both CM22/5 and CM22/19. Additionally, 37 genes were detected in the metabolic pathway concern to the seed pigmentation by BINs analysis using MAPMAN software. Finally, these differently expressed genes may aid in the research on seed pigmentation in maize breeding programs.

20.
Genes Genomics ; 42(9): 1011-1021, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32715384

RESUMO

BACKGROUND: Euphorbia jolkini, a medicinal herb that grows on the warm beaches in Japan and South Korea, is known to be used for traditional medicines to treat a variety of ailments, including bruises, stiffness, indigestion, toothache, and diabetes. OBJECTIVE: It is to analyze the whole transcriptome and identify the genes related to the phenylpropanoid biosynthesis in the medicinally important herb E jolkini. METHODS: Paired-end Illumina HiSeq™ 2500 sequencing technology was employed for cDNA library construction and Illumina sequencing. Public databases like TAIR (The Arabidopsis Information Resource), Swissprot and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used for annotations of unigenes obtained. RESULTS: The transcriptome of E. jolkini generated 139,215 assembled transcripts with an average length of 868 bp and an N50 value of 1460 bp that were further clustered using CD-HIT into 93,801 unigenes with an average length of 847 bp (N50-1410 bp). Sixty-three percent of the coding sequences (CDS) were annotated from the longest open reading frame (ORF). A remarkable percentage of unigenes were annotated against various databases. The differentially expressed gene analysis revealed that the expression of genes related to the terpenoid backbone biosynthesis pathway was higher in the flowers, whereas that of genes related to the phenylpropanoid biosynthesis pathway was both up- and downregulated in flowers and leaves. A search of against the transcription factor domain found 1023 transcription factors (TFs) that were from 54 TF families. CONCLUSION: Assembled sequences of the E. jolkini transcriptome are made available for the first time in this study E. jolkini and lay a foundation for the investigation of secondary metabolite biosynthesis.


Assuntos
Euphorbia/genética , Transcriptoma/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Genes de Plantas/genética , Repetições de Microssatélites/genética , Anotação de Sequência Molecular/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/genética , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...