Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Plast Surg ; 92(6S Suppl 4): S445-S452, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38857012

RESUMO

BACKGROUND: Management of vasospastic and vaso-occlusive disorders is a complex challenge, with current treatments showing varied success. Cannabinoids have demonstrated both vasodilatory and antifibrotic properties, which present potential mechanisms for therapeutic relief. No existing review examines these effects in peripheral circulation in relation to vasospastic and vaso-occlusive disorders. This study aims to investigate vasodilatory and antifibrotic properties of cannabinoids in peripheral vasculature for application in vasospastic and vaso-occlusive disorders affecting the hand. METHODS: A systematic search was conducted by 2 independent reviewers across PubMed, Cochrane, Ovid MEDLINE, and CINAHL to identify studies in accordance with the determined inclusion/exclusion criteria. Information regarding study design, medication, dosage, and hemodynamic or antifibrotic effects were extracted. Descriptive statistics were used to summarize study findings as appropriate. RESULTS: A total of 584 articles were identified, and 32 were selected for inclusion. Studies were grouped by effect type: hemodynamic (n = 17, 53%) and antifibrotic (n = 15, 47%). Vasodilatory effects including reduced perfusion pressure, increased functional capillary density, inhibition of vessel contraction, and increased blood flow were reported in 82% of studies. Antifibrotic effects including reduced dermal thickening, reduced collagen synthesis, and reduced fibroblast migration were reported in 100% of studies. CONCLUSION: Overall, cannabinoids were found to have vasodilatory and antifibrotic effects on peripheral circulation via both endothelium-dependent and independent mechanisms. Our review suggests the applicability of cannabis-based medicines for vasospastic and vaso-occlusive disorders affecting the hand (eg, Raynaud disease, Buerger disease). Future research should aim to assess the effectiveness of cannabis-based medicines for these conditions.


Assuntos
Canabinoides , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Vasodilatadores/uso terapêutico , Vasodilatadores/farmacologia , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Fibrose/tratamento farmacológico
2.
Nat Chem Biol ; 19(8): 972-980, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36894722

RESUMO

Although several high-fidelity SpCas9 variants have been reported, it has been observed that this increased specificity is associated with reduced on-target activity, limiting the applications of the high-fidelity variants when efficient genome editing is required. Here, we developed an improved version of Sniper-Cas9, Sniper2L, which represents an exception to this trade-off trend as it showed higher specificity with retained high activity. We evaluated Sniper2L activities at a large number of target sequences and developed DeepSniper, a deep learning model that can predict the activity of Sniper2L. We also confirmed that Sniper2L can induce highly efficient and specific editing at a large number of target sequences when it is delivered as a ribonucleoprotein complex. Mechanically, the high specificity of Sniper2L originates from its superior ability to avoid unwinding a target DNA containing even a single mismatch. We envision that Sniper2L will be useful when efficient and specific genome editing is required.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , DNA/genética
3.
Methods ; 204: 319-326, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34767923

RESUMO

Like helicases, CRISPR proteins such as Cas9 and Cas12a unwind DNA, but unlike helicases, these CRISPR proteins do not use ATP. Instead, they use binding energy to melt DNA locally and then utilize basepairing between guide (g) RNA and target strand to continue to unwind the DNA. CRISPR Cas9 is the most widely used tool for genome editing applications. The Cas9 endonuclease forms a complex with gRNA that can be programmed to bind a specific 20 bp segment of DNA, the protospacer. If there is enough of a sequence match between sgRNA and protospacer, Cas9 undergoes a conformational change, which activates the two nuclease domains, causing a double strand break in the DNA. We can use single-molecule FRET (smFRET) to probe the state of DNA unwinding as a function of mismatches between sgRNA and DNA. This approach can also be used to probe the position of Cas9's HNH domain before and after cleavage.


Assuntos
Sistemas CRISPR-Cas , Clivagem do DNA , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , DNA/química , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
4.
Genome Res ; 16(2): 240-50, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16365384

RESUMO

To study integration of the human LINE-1 retrotransposon (L1) in vivo, we developed a transgenic mouse model of L1 retrotransposition that displays de novo somatic L1 insertions at a high frequency, occasionally several insertions per mouse. We mapped 3' integration sites of 51 insertions by Thermal Asymmetric Interlaced PCR (TAIL-PCR). Analysis of integration locations revealed a broad genomic distribution with a modest preference for intergenic regions. We characterized the complete structures of 33 de novo retrotransposition events. Our results highlight the large number of highly truncated L1s, as over 52% (27/51) of total integrants were <1/3 the length of a full-length element. New integrants carry all structural characteristics typical of genomic L1s, including a number with inversions, deletions, and 5'-end microhomologies to the target DNA sequence. Notably, at least 13% (7/51) of all insertions contain a short stretch of extra nucleotides at their 5' end, which we postulate result from template-jumping by the L1-encoded reverse transcriptase. We propose a unified model of L1 integration that explains all of the characteristic features of L1 retrotransposition, such as 5' truncations, inversions, extra nucleotide additions, and 5' boundary and inversion point microhomologies.


Assuntos
Inversão Cromossômica/genética , DNA Intergênico/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Modelos Genéticos , Mutagênese Insercional , Animais , Genoma , Humanos , Camundongos , Camundongos Transgênicos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA