Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 30(28): e1800649, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29775490

RESUMO

Flexible inorganic-based micro light-emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light-extraction efficiency on plastics. Here, high-performance flexible vertical GaN light-emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical µLEDs (f-VLEDs) with high optical power (30 mW mm-2 ), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light-emitting system on the human skin is successfully realized by transferring the electrical power f-VLED. Finally, the high-density GaN f-VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain.


Assuntos
Gálio/química , Animais , Encéfalo , Cor , Camundongos , Nanofios
2.
Nanotechnology ; 28(22): 225703, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28448276

RESUMO

We demonstrated an InGaN/GaN-based, monolithic, white light-emitting diode (LED) without phosphors by using morphology-controlled active layers formed on multi-facet GaN templates containing polar and semipolar surfaces. The nanostructured surface morphology was controlled by changing the growth time, and distinct multiple photoluminescence peaks were observed at 360, 460, and 560 nm; these features were caused by InGaN/GaN-based multiple quantum wells (MQWs) on the nanostructured facets. The origin of each multi-peak was related to the different indium (In) compositions in the different planes of the quantum wells grown on the nanostructured GaN. The emitting units of MQWs in the LED structures were continuously connected, which is different from other GaN-based nanorod or nanowire LEDs. Therefore, the suggested structure had a larger active area. From the electroluminescence spectrum of the fabricated LED, monolithic white light emission with CIE color coordinates of x = 0.306 and y = 0.333 was achieved via multi-facet control combined with morphology control of the metal organic chemical vapor deposition-selective area growth of InGaN/GaN MQWs.

3.
J Nanosci Nanotechnol ; 17(4): 2559-562, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29658687

RESUMO

Single-junction p­i­n InGaP solar cells are grown at various temperatures from 620 to 700 °C by low pressure metalorganic chemical vapor deposition on GaAs (001) substrates. The short circuit current density of the p­i­n InGaP solar cells increases by up to 38.8% when the growth temperature is reduced from 700 to 620 °C, while the open circuit voltage and fill factor show relatively small changes. The external quantum efficiency, especially, in the wavelength regime below 500 nm, is improved for the p­i­n InGaP solar cells grown at lower temperatures. The improvement might be attributed to the reduced absorption loss of the photons in the n-InGaP emitter region. The highest conversion efficiency of 11.01% is attributed from the p­i­n InGaP solar cell grown at 640 °C. Electron mobility and concentration of undoped InGaP layers are investigated as a function of the growth temperature and correlated with the p­i­n InGaP solar cell performance.

4.
Opt Express ; 22 Suppl 3: A723-34, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922380

RESUMO

A new approach to surface roughening was established and optimized in this paper for enhancing the light extraction of high power AlGaInP-based LEDs, by combining ultraviolet (UV) assisted imprinting with dry etching techniques. In this approach, hexagonal arrays of cone-shaped etch pits are fabricated on the surface of LEDs, forming gradient effective-refractive-index that can mitigate the emission loss due to total internal reflection and therefore increase the light extraction efficiency. For comparison, wafer-scale FLAT-LEDs without any surface roughening, WET-LEDs with surface roughened by wet etching, and DRY-LEDs with surface roughened by varying the dry etching time of the AlGaInP layer, were fabricated and characterized. The average output power for wafer-scale FLAT-LEDs, WET-LEDs, and DRY3-LEDs (optimal) at 350 mA was found to be 102, 140, and 172 mW, respectively, and there was no noticeable electrical degradation with the WET-LEDs and DRY-LEDs. The light output was increased by 37.3% with wet etching, and 68.6% with dry etching surface roughening, respectively, without compromising the electrical performance of LEDs. A total number of 1600 LED chips were tested for each type of LEDs. The yield of chips with an optical output power of 120 mW and above was 0.3% (4 chips), 42.8% (684 chips), and 90.1% (1441 chips) for FLAT-LEDs, WET-LEDs, and DRY3-LEDs, respectively. The dry etching surface roughening approach developed here is potentially useful for the industrial mass production of wafer-scale high power LEDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...