Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytother Res ; 38(2): 1059-1070, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158648

RESUMO

Though cornin is known to induce angiogenic, cardioprotective, and apoptotic effects, the apoptotic mechanism of this iridoid monoglucoside is not fully understood in prostate cancer cells to date. To elucidate the antitumor mechanism of cornin, cytotoxicity assay, cell cycle analysis, Western blotting, RT-qPCR, RNA interference, immunofluorescence, immunoprecipitation, reactive oxygen species (ROS) measurement, and inhibitor assay were applied in this work. Cornin exerted cytotoxicity, increased sub-G1 population, and cleaved PARP and caspase3 in LNCaP cells more than in DU145 cells. Consistently, cornin suppressed phosphorylation of signal transducer and activator of transcription 3 (STAT3) and disrupted the colocalization of STAT3 and androgen receptor (AR) in LNCaP and DU145 cells, along with suppression of AR, prostate-specific antigen (PSA), and 5α-reductase in LNCaP cells. Furthermore, cornin increased ROS production and the level of miR-193a-5p, while ROS inhibitor N-acetylcysteine disturbed the ability of cornin to attenuate the expression of AR, p-STAT3, PSA, pro-PARP, and pro-caspase3 in LNCaP cells. Notably, miR-193a-5p mimics the enhanced apoptotic effect of cornin, while miR-193a-5p inhibitor reverses the ability of cornin to abrogate AR, PSA, and STAT3 in LNCaP cells. Our findings suggest that ROS production and the disturbed crosstalk between STAT3 and AR by microRNA-193a-5p are critically involved in the apoptotic effect of cornin in prostate cancer cells.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antígeno Prostático Específico , Fator de Transcrição STAT3/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , MicroRNAs/metabolismo , Apoptose , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
2.
J Agric Food Chem ; 66(38): 9960-9967, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30211553

RESUMO

Here the molecular mechanisms of Kaempferol were examined in colorectal cancers (CRCs). Kaempferol significantly exerted antiproliferative and cytotoxic effect in HCT116, HCT15, and SW480 cells. Also, Kaempferol increased sub G1 population, G2/M arrest, and the numbers of TUNEL cells in HCT116 colorectal cancer cells. Also, Kaempferol increased the PARP cleavages and activation of caspase-8, -9, and -3, phospho-p38 MAPK, p53, and p21 in HCT116 and HCT15 cells. Of note, Kaempferol generated reactive oxygen species (ROS) (43.7 ± 0.56 vs 25.8 ± 0.43, P < 0.01) in HCT116 cells and reversely ROS inhibitor NAC obstructed the effects of Kaempferol to cleave PARP and caspase-3 and activate phosphorylation of p38 MAPK in HCT116 colorectal cancer cells. Likewise, pancaspase inhibitor z-vad-fmk, p38 MAPK inhibitor SB203580, and p53 depletion blocked PARP and caspase-3 in Kaempferol treated HCT116 colorectal cancer cells. Therefore, these findings provide novel insight that ROS and p53 signalings mediate p38 phosphorylation and caspase activation in Kaempferol stimulated apoptosis in CRCs.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Neoplasias Colorretais/fisiopatologia , Quempferóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Caspases/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Expert Opin Ther Targets ; 21(9): 911-920, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28816549

RESUMO

INTRODUCTION: Among several genetic alterations involved in the progression of prostate cancer, B cell lymphoma gene number 2 (BCL-2) is an important target molecule in the progression of androgen-independent prostate cancer (AIPC) after androgen ablation or castration. Nevertheless, the molecular mechanism of BCL-2 in prostate cancer progression remains elusive and controversial. In the current review, we discuss the critical role of BCL-2 in the carcinogenesis of prostate cancer with experimental evidences on the BCL-2 molecular networks in AIPC and androgen-dependent prostate cancer (ADPC) and subsequently suggest perspective research targeting BCL-2. Areas covered: This review focused on the molecular implications of BCL-2 in association with other molecules and signaling pathways involved in the progression and carcinogenesis of prostate cancer. Expert opinion: BCL-2 plays a pivotal role in the progression of AIPC than in ADPC since androgen represses BCL-2. BCL-2 acts as a pro-survival molecule in association with androgen-related signaling in the progression of ADPC, while BCL-2 upregulation, PTEN loss, PI3K/AKT phosphorylation and receptor tyrosine kinase (RTK) activation are primarily involved in AIPC. To identify more effective prostate cancer therapy, further mechanistic studies are required with BCL-2 inhibitors in AIPC and ADPC, considering a multi-target therapy against BCL-2 and its related signaling.


Assuntos
Androgênios/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...