Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 135: 112687, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35581080

RESUMO

Conventionally, macro-textured surfaces comprising several hundred micrometer-sized patterns are used to minimize silicone-based breast implant complications, including capsular contracture. However, because of the recent cases of breast implant-associated anaplastic large cell lymphoma from macro-textured implants, there is a strong demand for nano- or micro-textured silicone implants with dimensions smaller than sub-micrometers. Herein, we propose a simple and cost-effective topographical surface modification strategy for silicone-based implants. Several hundred nanometer to sub-micrometer wide groove-type micro-textures were fabricated on a polydimethylsiloxane surface using electrospun polyvinylpyrrolidone fibers as a sacrificial template. The aligned and randomly oriented micro-textures were prepared by controlling the electrospun fiber orientation. In vitro experiments demonstrated that the micro-textured polydimethylsiloxane was cytocompatible and suppressed differentiation of fibroblasts into myofibroblasts. Importantly, the aligned micro-texture promoted the polarization of macrophages into the anti-inflammatory M2 phenotype. Long-term in vivo studies established that the micro-textures potently suppressed various factors affecting foreign body reactions by downregulating profibrotic cytokine gene expression and reducing the fibroblast and myofibroblast counts, the cells playing important roles in the immune response. Thus, the thickness and collagen density of fibrous capsules were decreased, demonstrating that the micro-textured surface effectively inhibited capsular contracture. Although the aligned micro-textures contributed to the polarization of macrophages to the M2 phenotype both in vitro and in vivo, foreign body reaction by both the aligned and randomly oriented micro-textures are similar.


Assuntos
Implantes de Mama , Contratura , Dimetilpolisiloxanos , Fibrose , Humanos , Silicones , Propriedades de Superfície
2.
J Nanosci Nanotechnol ; 21(7): 3919-3922, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715717

RESUMO

Structural colors based on nanostructured surfaces are an environmentally friendly alternative to dyes and pigments. In this study, structural colors were produced by spherical silica nanoparticles. By controlling the size of the spherical silica nanoparticles, the changes in color were controlled. The sizes of the nanoparticles were controlled by adjusting the ammonia content in the conventional Stöber method. Spherical silica nanoparticle powders were obtained using a centrifuge and an ultrasonic grinder oven, which were subsequently dispersed in deionized water and alcohol for dip coating. The particle sizes of the samples increased with increase in the amount of ammonia used in the synthesis process and were not affected by the dip coating. Spherical silica nanoparticles were uniformly arranged on the surface of the glass slides for all the samples studied. Thus, the structural colors produced by the spherical silica nanoparticles changed according to the particle size, which can be controlled by the ammonia content during synthesis.


Assuntos
Nanopartículas , Dióxido de Silício , Biomimética , Tamanho da Partícula , Água
3.
J Nanosci Nanotechnol ; 20(7): 4235-4238, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31968448

RESUMO

In this paper, surface characteristics of 3D printed structures fractured at low temperature environments are analyzed. The samples are fabricated by using ABS (acrylonitrile butadiene styrene copolymer) material, and the structures are constructed by the well-known honeycomb models using a FDM-Type 3D printer. To analyze the fracture surface of the samples constructed uniquely by using the 3D printer, the bending loads are applied to the samples at 30, -10 and -50 °C, respectively. The characteristics of the fracture surfaces of the 3D samples are also observed by the FE-SEM (field emission scanning electron microscope) equipment. From this experiment, it is evaluated that the fractured surface of the 3D sample is very rough at 30 °C, while it is smooth at a relatively low temperature. Also, several unique features of the fracture surface of a 3D printed sample structured by honeycomb models are also examined.

4.
Macromol Biosci ; 19(12): e1900206, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31709762

RESUMO

The surface of poly(dimethylsiloxane) (PDMS) is grafted with poly(acrylic acid) (PAA) layers via surface-initiated photopolymerization to suppress the capsular contracture resulting from a foreign body reaction. Owing to the nature of photo-induced polymerization, various PAA micropatterns can be fabricated using photolithography. Hole and stripe micropatterns ≈100-µm wide and 3-µm thick are grafted onto the PDMS surface without delamination. The incorporation of PAA micropatterns provides not only chemical cues by hydrophilic PAA microdomains but also topographical cues by hole or stripe micropatterns. In vitro studies reveal that a PAA-grafted PDMS surface has a lower proliferation of both macrophages (Raw 264.7) and fibroblasts (NIH 3T3) regardless of the pattern presence. However, PDMS with PAA micropatterns, especially stripe micropatterns, minimizes the aggregation of fibroblasts and their subsequent differentiation into myofibroblasts. An in vivo study also shows that PDMS samples with stripe micropatterns polarized macrophages into anti-inflammatory M2 macrophages and most effectively inhibits capsular contracture, which is demonstrated by investigation of inflammation score, transforming-growth-factor-ß expression, number of macrophages, and myofibroblasts as well as the collagen density and capsule thickness.


Assuntos
Resinas Acrílicas/farmacologia , Dimetilpolisiloxanos/farmacologia , Reação a Corpo Estranho/imunologia , Implantes Experimentais , Pele/efeitos dos fármacos , Tela Subcutânea/efeitos dos fármacos , Resinas Acrílicas/química , Animais , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dimetilpolisiloxanos/química , Reação a Corpo Estranho/induzido quimicamente , Expressão Gênica/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Células NIH 3T3 , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Pele/imunologia , Pele/metabolismo , Tela Subcutânea/imunologia , Tela Subcutânea/metabolismo , Propriedades de Superfície , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-24795815

RESUMO

OBJECTIVES: The purpose of this study was to evaluate and compare changes to pulmonary function among firefighters and non-firefighters who were exposed to harmful substances in their work environments. METHODS: Firefighters (n = 322) and non-firefighters (n = 107) in Daegu who received a pulmonary function test in 2008 and 2011 as well as a regular health examination were included. Repeated measures ANOVA was performed to evaluate the pulmonary function of the two groups over the three-year period. RESULTS: After adjusting for age, height, body mass index, duration of exposure, physical activity, and smoking, which were statistically different between the two groups and known risk factors of pulmonary function, the forced expiratory volume in one s FEV1, forced vital capacity FVC, and FEV1/FVC% over the 3 year period were significantly lower among firefighters compared with non-firefighters. CONCLUSIONS: Evaluating the working environment of firefighters is difficult; however, our study revealed that pulmonary function declined in firefighters. Thus, more effort should be made to prevent and manage respiratory diseases early by preforming strict and consistent pulmonary function tests in firefighters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...