Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(14): 6949-6960, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38494908

RESUMO

The nature of the conducting filament (CF) with a high concentration of oxygen vacancies (VOs) in oxide thin film-based resistive random access memory (RRAM) remains unclear. The VOs in the CF have been assumed to be positively charged (VO2+) to explain the field-driven switching of RRAM, but VO2+ clusters in high concentration encounter Coulomb repulsion, rendering the CF unstable. Therefore, this study examined the oxidation state of VOs in the CF and their effects on the switching behavior via density functional theory calculations using a Pt/TiO2/Ti model system. It was concluded that the VOs in the CF are in a low oxidation state but are transformed to VO2+ immediately after release from the CF. In addition, the short-range interactions between VOs were confirmed to facilitate the rupture and rejuvenation of the CF by reducing the required activation energy. Finally, an improved switching model was proposed by considering the charge transition of VOs, providing a plausible explanation for the reported coexistence of two opposite bipolar switching polarities: the eight-wise and the counter-eight-wise polarities.

2.
Adv Mater ; 34(50): e2207143, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271720

RESUMO

Atomic layer deposition (ALD) of Sb2 Te3 /GeTe superlattice (SL) film on planar and vertical sidewall areas containing TiN metal and SiO2 insulator is demonstrated. The peculiar chemical affinity of the ALD precursor to the substrate surface and the 2D nature of the Sb2 Te3 enable the growth of an in situ crystallized SL film with a preferred orientation. The SL film shows a reduced reset current of ≈1/7 of the randomly oriented Ge2 Sb2 Te5 alloy. The reset switching is induced by the transition from the SL to the (111)-oriented face-centered-cubic (FCC) Ge2 Sb2 Te5 alloy and subsequent melt-quenching-free amorphization. The in-plane compressive stress, induced by the SL-to-FCC structural transition, enhances the electromigration of Ge along the [111] direction of FCC structure, which enables such a significant improvement. Set operation switches the amorphous to the (111)-oriented FCC structure.

3.
Nat Commun ; 13(1): 645, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115504

RESUMO

Atomic-resolution Cs-corrected scanning transmission electron microscopy revealed local shifting of two oxygen positions (OI and OII) within the unit cells of a ferroelectric (Hf0.5Zr0.5)O2 thin film. A reversible transition between the polar Pbc21 and antipolar Pbca phases, where the crystal structures of the 180° domain wall of the Pbc21 phase and the unit cell structure of the Pbca phase were identical, was induced by applying appropriate cycling voltages. The critical field strength that determined whether the film would be woken up or fatigued was ~0.8 MV/cm, above or below which wake-up or fatigue was observed, respectively. Repeated cycling with sufficiently high voltages led to development of the interfacial nonpolar P42/nmc phase, which induced fatigue through the depolarizing field effect. The fatigued film could be rejuvenated by applying a slightly higher voltage, indicating that these transitions were reversible. These mechanisms are radically different from those of conventional ferroelectrics.

4.
Nanoscale ; 12(34): 17703-17714, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32608427

RESUMO

This study provides an ab initio thermodynamics approach to take a step forward in the theoretical modeling on the growth of GaAs nanowires. In order to understand the effects of growth conditions on the involvement of stacking faults and polytypism, we investigated the vapor-phase growth kinetics under arbitrary temperature-pressure conditions by combining the atomic-scale calculation with the thermodynamic treatment of a vapor-solid system. Considering entropy contribution and electronic energy, the chemical potential and surface energies of various reconstructions were calculated as a function of temperature and pressure, leading to the prediction of the change in Gibbs free energy at each stage of nucleation and growth. This enabled us to predict the temperature-pressure-dependent variation in nucleation rate and formation probability of possible stacking sequences: zinc blende, stacking faults, twin, and wurtzite. As a result, the formation probabilities of stacking faults and polytypism were found to decrease with increasing temperature or decreasing pressure, which agreed well with available experiments. In addition, by showing that the formation probability of the stacking defects in GaAs nanowires grown along the 〈111〉B direction is about ten times higher than that along the 〈111〉A direction, the intriguing asymmetric stacking behavior during the growth along the polar direction and its dependence on growth conditions were fundamentally elucidated. The proposed ab initio approach bridges the gap between atomic-scale static calculation at zero-temperature and kinetic growth process under arbitrary vapor-phase conditions, and thus will contribute to the nanoscale growth not only for GaAs nanowires but also for other materials.

5.
J Phys Chem A ; 124(1): 247-254, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31809047

RESUMO

Finding an "ideal" catalyst is a matter of great interest in the communities of chemists and material scientists, partly because of its wide spectrum of industrial applications. Information regarding a physical parameter termed "adsorption energy", which dictates the degrees of adhesion of an adsorbate on a substrate, is a primary requirement in selecting the catalyst for catalytic reactions. Both experiments and in silico modeling are extensively being used in estimating the adsorption energies, both of which are an Edisonian approach, demand plenty of resources, and are time-consuming. In this paper, employing a data-mining approach, we predict the adsorption energies of monoatomic and diatomic gases on the surfaces of many transition metals (TMs) in no time. With less than a set of 10 simple atomic features, our predictions of the adsorption energies are within a root-mean-squared error (RMSE) of 0.4 eV with the quantum many-body perturbation theory estimates, a computationally expensive method with a good experimental agreement. Based on the important features obtained from machine learning models, we construct a set of mathematical equations using the compressed sensing technique to calculate adsorption energy. We also show that the RMSE can be further minimized up to 0.10 eV using the precomputed adsorption energies obtained with the conventional exchange and correlation (XC) functional by a new set of scaling relations.

6.
Sci Rep ; 9(1): 14919, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624270

RESUMO

We theoretically investigate the mechanism of ferroelectric switching via interlayer shear in 3R MoS2 using first principles and lattice dynamics calculations. First principle calculations show the prominent anharmonic coupling of the infrared inactive interlayer shear and the infrared active phonons. The nonlinear coupling terms generates an effective anharmonic force which drives the interlayer shear mode and lowers the ferroelectric switching barrier depending on the amplitude and polarization of infrared mode. Lattice dynamics simulations show that the interlayer shear mode can be coherently excited to the switching threshold by a train of infrared pulses polarized along the zigzag axis of MoS2. The results of this study indicate the possibility of ultrafast ferroelectricity in stacked two-dimensional materials from the control of stacking sequence.

7.
J Phys Condens Matter ; 31(31): 315502, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31026843

RESUMO

Electrons in two-dimensional layered crystals gain a discrete positional degree of freedom over layers. We propose the two-dimensional transition metal dichalcogenide homostructure with polar symmetry as a prototypical platform where the degrees of freedom for the layers and valleys can be independently controlled through an optical method. In 3R MoS2, a model system, the presence of the spontaneous polarization and built-in electric field along the stacking axis is theoretically proven by the density functional theory. The K valley states under the electric field exhibit Wannier-Stark type localization with atomic-scale confinement driven by double group symmetry. The simple interlayer-dynamics-selection rule of the valley carriers in 3R homostructure enables a binary operation, upward or downward motion, using visible and infrared light sources. Together with the valley-index, a 2 [Formula: see text] 2 states/cell device using a dual-frequency polarized light source is suggested.

8.
Sci Rep ; 9(1): 1127, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718922

RESUMO

This work reports on the theoretical equilibrium crystal shapes of GaAs and InAs as a function of temperature and pressure, taking into account the contribution of the surface vibration, using ab-initio thermodynamic calculations. For this purpose, new (111)B reconstructions, which are energetically stable at a high temperature, are suggested. It was found that there was a feasible correspondence between the calculated equilibrium shapes and the experimental shapes, which implied that the previous experimental growth was performed under conditions that were close to equilibrium. In this study, GaAs and InAs were selected as prototype compound semiconductors, but the developed calculation methodology can also be applied to other III-V compound semiconductor materials.

9.
Sci Rep ; 8(1): 14471, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262851

RESUMO

Despite the wide applicability of oxynitrides from photocatalysis to refractory coatings, our understanding of the materials has been limited in terms of their thermodynamics. The configurational entropy via randomly mixed O/N or via cation vacancies are known to stabilize oxynitrides, despite the positive formation enthalpies. Here, using tin oxynitrides as a model system, we show by ab initio computations that oxynitrides in seemingly charge-unbalanced composition stabilize by forming pernitrides among metal-(O,N)6 octahedra. The nitrogen pernitride dimer, =(N-N)=, results in the effective charge of -4, facilitating the formation of nitrogen-rich oxynitrides. We report that the dimer forms only in structures with corner-sharing octahedra, since the N-N bond formation requires sufficient rotational degrees of freedom among the octahedra. X-ray photoemission spectra of the synthesized tin oxynitride films reveal two distinct nitrogen bonding environments, confirming the computation results. This work opens the search space for a novel kind of oxynitrides stabilized by N dimer formation, with specific structural selection rules.

10.
Sci Rep ; 7(1): 17579, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242504

RESUMO

We propose a scalable synaptic circuit realizing spike timing dependent plasticity (STDP)-compatible with randomly spiking neurons. The feasible working of the circuit was examined by circuit simulation using the BSIM 4.6.0 model. A distinguishable feature of the circuit is the use of floating-gate integrators that provide the compact implementation of biologically plausible relaxation time scale. This relaxation occurs on the basis of charge tunneling that mainly relies upon area-independent tunnel barrier properties (e.g. barrier width and height) rather than capacitance. The circuit simulations feature (i) weight-dependent STDP that spontaneously limits the synaptic weight growth, (ii) competitive synaptic adaptation within both unsupervised and supervised frameworks with randomly spiking neurons. The estimated power consumption is merely 34 pW, perhaps meeting one of the most crucial principles (power-efficiency) of neuromorphic engineering. Finally, a means of fine-tuning the STDP behavior is provided.

11.
Sci Rep ; 7(1): 10691, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878278

RESUMO

A detailed understanding of the atomic configuration of the compound semiconductor surface, especially after reconstruction, is very important for the device fabrication and performance. While there have been numerous experimental studies using the scanning probe techniques, further theoretical studies on surface reconstruction are necessary to promote the clear understanding of the origins and development of such subtle surface structures. In this work, therefore, a pressure-temperature surface reconstruction diagram was constructed for the model case of the InAs (001) surface considering both the vibrational entropy and configurational entropy based on the density functional theory. Notably, the equilibrium fraction of various reconstructions was determined as a function of the pressure and temperature, not as a function of the chemical potential, which largely facilitated the direct comparison with the experiments. By taking into account the entropy effects, the coexistence of the multiple reconstructions and the fractional change of each reconstruction by the thermodynamic condition were predicted and were in agreement with the previous experimental observations. This work provides the community with a useful framework for such type of theoretical studies.

12.
Phys Chem Chem Phys ; 19(32): 21282-21286, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28776619

RESUMO

Being a member of the van der Waals class of solids, bilayer MoS2 exhibits polytypism due to different possible stacking arrangements, namely, 2Hc, 2Ha and 3R-polytypes. Unlike monolayer MoS2, these bilayers exhibit indirect band gaps. Band extrema states originate from a linear combination of Mo-(d) and S-(p) orbitals which are sensitive to the interlayer interactions. We have studied the impact of stacking pattern on the electronic structure and electron/hole transport properties of these polytypes. Based on first-principles computations coupled with the Boltzmann transport formalism, we found that a strong electron-hole anisotropy can be realised in the 2Ha-MoS2 polytype unlike in a monolayer which is isotropic in nature. A staggered arrangement between two layers results in a higher relaxation time for electrons compared to holes leading to anisotropy which is of importance in device engineering.

13.
Nat Commun ; 7: 12449, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27527268

RESUMO

Interfaces, such as grain boundaries in a solid material, are excellent regions to explore novel properties that emerge as the result of local symmetry-breaking. For instance, at the interface of a layered-chalcogenide material, the potential reconfiguration of the atoms at the boundaries can lead to a significant modification of the electronic properties because of their complex atomic bonding structure. Here, we report the experimental observation of an electron source at 60° twin boundaries in Bi2Te3, a representative layered-chalcogenide material. First-principles calculations reveal that the modification of the interatomic distance at the 60° twin boundary to accommodate structural misfits can alter the electronic structure of Bi2Te3. The change in the electronic structure generates occupied states within the original bandgap in a favourable condition to create carriers and enlarges the density-of-states near the conduction band minimum. The present work provides insight into the various transport behaviours of thermoelectrics and topological insulators.

14.
Sci Rep ; 6: 20825, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864751

RESUMO

Recent claim on the direct observation of a negative capacitance (NC) effect from a single layer epitaxial Pb(Zr0.2,Ti0.8)O3 (PZT) thin film was carefully reexamined, and alternative interpretations that can explain the experimental results without invoking the NC effect are provided. Any actual ferroelectric capacitor has an interfacial layer, and experiment always measures the sum of voltages across the interface layer and the ferroelectric layer. The main observation of decreasing ferroelectric capacitor voltage (VF) for increasing ferroelectric capacitor charge (QF), claimed to be the direct evidence for the NC effect, could be alternatively interpreted by either the sudden increase in the positive capacitance of a ferroelectric capacitor or decrease in the voltage across the interfacial layer due to resistance degradation. The experimental time-transient VF and QF could be precisely simulated by these alternative models that fundamentally assumes the reverse domain nucleation and growth. Supplementary experiments using an epitaxial BaTiO3 film supported this claim. This, however, does not necessarily mean that the realization of the NC effect within the ferroelectric layer is impractical under appropriate conditions. Rather, the circuit suggested by Khan et al. may not be useful to observe the NC effect directly.

15.
Sci Rep ; 6: 20550, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26830978

RESUMO

Identification of microstructural evolution of nanoscale conducting phase, such as conducting filament (CF), in many resistance switching (RS) devices is a crucial factor to unambiguously understand the electrical behaviours of the RS-based electronic devices. Among the diverse RS material systems, oxide-based redox system comprises the major category of these intriguing electronic devices, where the local, along both lateral and vertical directions of thin films, changes in oxygen chemistry has been suggested to be the main RS mechanism. However, there are systems which involve distinctive crystallographic phases as CF; the Magnéli phase in TiO2 is one of the very well-known examples. The current research reports the possible presence of distinctive local conducting phase in atomic layer deposited SrTiO3 RS thin film. The conducting phase was identified through extensive transmission electron microscopy studies, which indicated that oxygen-deficient Sr2Ti6O13 or Sr1Ti11O20 phase was presumably present mainly along the grain boundaries of SrTiO3 after the unipolar set switching in Pt/TiN/SrTiO3/Pt structure. A detailed electrical characterization revealed that the samples showed typical bipolar and complementary RS after the memory cell was unipolar reset.

16.
Nanoscale ; 7(38): 15830-9, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26360101

RESUMO

Pt nanoparticles (NPs) in a proton exchange membrane fuel cell as a catalyst for an oxygen reduction reaction (ORR) fairly overbind oxygen and/or hydroxyl to their surfaces, causing a large overpotential and thus low catalytic activity. Realizing Pt-based core-shell NPs (CSNPs) is perhaps a workaround for the weak binding of oxygen and/or hydroxyl without a shortage of sufficient oxygen molecule dissociation on the surface. Towards the end, we theoretically examined the catalytic activity of NPs using density functional theory; each NP consists of one of 12 different 3d-5d transition metal cores (groups 8-11) and a Pt shell. The calculation results evidently suggest the enhancement of catalytic activity of CSNPs in particular when 3d transition metal cores are in use. The revealed trends in activity change upon the core metal were discussed with respect to the thermodynamic and electronic structural aspects of the NPs in comparison with the general d-band model. The disparity between the CSNP and the corresponding bilayer catalyst, which is the so-called size effect, was remarkable; therefore, it perhaps opens up the possibility of size-determined catalytic activity. Finally, the overpotential for all CSNPs was evaluated in an attempt to choose promising combinations of CSNP materials.

17.
Sci Rep ; 5: 11839, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26137994

RESUMO

The possibilities offered by catalytic γ-Al2O3 substrates are explored, and the mechanism governing graphene formation thereon is elucidated using both numerical simulations and experiments. The growth scheme offers metal-free synthesis at low temperature, grain-size customization, large-area uniformity of electrical properties, single-step preparation of graphene/dielectric structures, and readily detachable graphene. We quantify based on thermodynamic principles the activation energies associated with graphene nucleation/growth on γ-Al2O3, verifying the low physical and chemical barriers. Importantly, we derive a universal equation governing the adsorption-based synthesis of graphene over a wide range of temperatures in both catalytic and spontaneous growth regimes. Experimental results support the equation, highlighting the catalytic function of γ-Al2O3 at low temperatures. The synthesized graphene is manually incorporated as a 'graphene sticker' into an ultrafast mode-locked laser.

18.
Sci Rep ; 2: 939, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23230505

RESUMO

The strain states of [111]-, [110]-, and [002]-oriented grains in poly-crystalline sputtered (Ba,Sr)TiO(3) thin films on highly [111]-oriented Pt electrode/Si substrates were carefully examined by X-ray diffraction techniques. Remarkably, [002]-oriented grains respond more while [110]- and [111]-oriented grains do less than the theoretically estimated responses, which is understandable from the arrangement of the TiO(6) octahedra with respect to the stress direction. Furthermore, such mechanical responses are completely independent of the degree of crystallization and film thickness. The transition growth temperature between the positive and negative strains was also different depending on the grain orientation. The unstrained lattice parameter for each type of grain was different suggesting that the oxygen vacancy concentration for each type of grain is different, too. The results reveal that polycrystalline (Ba,Sr)TiO(3) thin films are not an aggregation of differently oriented grains which simply follow the mechanical behavior of single crystal with different orientations.

19.
J Nanosci Nanotechnol ; 12(7): 6113-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966718

RESUMO

The mechanical properties of pure and doped crystalline Ge2Sb2Te5 were investigated by using density functional calculations. Nitrogen or oxygen was added at either the interstitial or substitutional sites of cubic Ge2Sb2Te5. The lattice parameter, elastic stiffness and related moduli were investigated from the viewpoint of the doping concentration, dopant species, dopant states and film direction. The effect of the doping concentration was more dominant than those of the dopant species and their states on the non-directionality properties, such as the bulk modulus and lattice parameter. It turned out that Ge2Sb2Te5 became slightly more rigid as the doping concentration of nitrogen or oxygen increased. On the other hand, the effect of the film direction on the directional properties, such as the biaxial modulus of the Ge2Sb2Te5 film, was found to be more predominant than that of doping. The biaxial modulus of the (001) oriented film was calculated to be much higher than those of the other films, indicating that the (001) film is the most vulnerable to thermal stress.

20.
J Nanosci Nanotechnol ; 11(7): 6589-93, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121762

RESUMO

Density functional theory calculations were performed on the energetics of an adatom and adlayer of Cu on a Ru(0001) slab and on the interdiffusion of Cu or Ru at the interface of Cu/Ru(0001) slab. The total energy calculations showed the equal possibilities of both pseudomorphic hcp- and fcc-adlayers of Cu on the Ru(0001) slab. The formation energies of mono-vacancy at the Cu/Ru(0001) interface and the barrier energies of the vacancy-mediated interdiffusion were calculated. The formation energies of mono-vacancy at the Cu/Ru(0001) interface were determined to be 1.31 eV for Cu atom and 1.83 eV for Ru atom, respectively. The diffusion of Ru atom into the vacancy of Cu across the Cu/Ru(0001) interface required energy increase of 0.98 eV, and the barrier energy was substantially high, 1.80 eV. On the other hand, the diffusion of Cu atom into the vacancy of Ru across the Ru/Cu(0001) interface was favored with the energy reduction of 0.35 eV. However, under this most favorable situation, the barrier energy is 0.52 eV. The calculation results imply that, as far as energetics is concerned, the diffusion of both Cu and Ru atoms via the vacancy-mediated diffusion mechanism at the Cu/Ru(0001) interface seems rather restricted unless considerable thermal activation is provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...