Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5752, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388123

RESUMO

The sea surface temperature (SST) drops rapidly when a typhoon passes over the western North Pacific, and the cold SST is known as cold wake. In general, more intense typhoons on the day of arrival cause stronger SST cooling via turbulent oceanic vertical mixing. Moreover, after intense typhoons have passed, there are cases in which the SST decreases further, and the cold conditions persist for approximately 2 weeks. In this study, we suggest possible mechanisms by which long-lasting cold SST responses to typhoon forcing are related to the generation of cold-core-like ocean circulation. The atmospheric surface cyclonic circulation causes divergent anticlockwise upper ocean currents owing to the Ekman transport, which in turn induces further upwelling and strengthens the cold SST. In the European Center for Medium-Range Weather Forecasts Ocean Reanalysis System 5, cold-core-like ocean current responses were strong in 5 typhoons among the 12 intense typhoons that passed through 30°N in the western North Pacific region from 2001 to 2019. The favorable conditions for a cold-core circulation to occur can be summarized as a slow typhoon migration speed with strong intensity, well stratification of vertical ocean layers, and the absence of large-scale strong background currents.

2.
J Microbiol ; 56(1): 56-64, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29299841

RESUMO

Increased lipid accumulation of algal cells as a response to environmental stress factors attracted much attention of researchers to incorporate this stress response into industrial algal cultivation process with the aim of enhancing algal lipid productivity. This study applies high-salinity stress condition to a two-phase process in which microalgal cells are initially grown in freshwater medium until late exponential phase and subsequently subjected to high-salinity condition that induces excessive lipid accumulation. Our initial experiment revealed that the concentrated culture of Chlorella sorokiniana HS1 exhibited the intense fluorescence of Nile red at the NaCl concentration of 60 g/L along with 1 g/L of supplemental bicarbonate after 48 h of induction period without significantly compromising cultural integrity. These conditions were further verified with the algal culture grown for 7 days in a 1 L bottle reactor that reached late exponential phase; a 12% increment in the lipid content of harvested biomass was observed upon inducing high lipid accumulation in the concentrated algal culture at the density of 5.0 g DW/L. Although an increase in the sum of carbohydrate and lipid contents of harvested biomass indicated that the external carbon source supplemented during the induction period increased overall carbon assimilation, a decrease in carbohydrate content suggested the potential reallocation of cellular carbon that promoted lipid droplet formation under high-salinity stress. These results thus emphasize that the two-phase process can be successfully implemented to enhance algal lipid productivity by incorporating high-salinity stress conditions into the pre-concentrated sedimentation ponds of industrial algal production system.


Assuntos
Chlorella/metabolismo , Lipídeos/biossíntese , Microalgas/metabolismo , Cloreto de Sódio/metabolismo , Chlorella/crescimento & desenvolvimento , Água Doce/química , Microalgas/crescimento & desenvolvimento , Salinidade , Cloreto de Sódio/análise
3.
Sci Rep ; 7(1): 1979, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28512332

RESUMO

It is established that biodiversity determines productivity of natural ecosystems globally. We have proved that abiotic factors influenced biomass productivity in engineered ecosystems i.e. high rate algal ponds (HRAPs), previously. This study demonstrates that biotic factors, particularly microalgal diversity, play an essential role in maintaining stable biomass productivity in HRAP treating municipal wastewater by mutualistic adaptation to environmental factors. The current study examined data from the second year of a two-year study on HRAP treating municipal wastewater. Microalgal diversity, wastewater characteristics, treatment efficiency and several environmental and meteorological factors were documented. Multivariate statistical analyses reveal that microalgae in uncontrolled HRAPs adapt to adverse environmental conditions by fostering diversity. Subsequently, five dominant microalgal strains by biovolume were isolated, enriched, and optimum conditions for high biomass productivity were ascertained. These laboratory experiments revealed that different microalgal strains dominate in different conditions and a consortium of these diverse taxa help in sustaining the algae community from environmental and predatory pressures. Diversity, niche or seasonal partitioning and mutualistic growth are pertinent in microalgal cultivation or wastewater treatment. Therefore, enrichment of selective species would deprive the collective adaptive ability of the consortium and encourage system vulnerability especially in wastewater treatment.


Assuntos
Biomassa , Microalgas/classificação , Lagoas , Águas Residuárias , Animais , Biodiversidade , Transporte de Elétrons , Concentração de Íons de Hidrogênio , Microalgas/genética , Microalgas/metabolismo , Filogenia , Temperatura , Zooplâncton
4.
J Microbiol Biotechnol ; 25(9): 1547-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25951844

RESUMO

The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m(2), dry cell weight), and total lipid yield (5.8 g/m(2)) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Biomassa , Células Imobilizadas/fisiologia , Clorófitas/fisiologia , Metabolismo dos Lipídeos , Esgotos/microbiologia , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Células Imobilizadas/metabolismo , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Purificação da Água
5.
J Nanosci Nanotechnol ; 12(2): 1170-3, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22629914

RESUMO

Micro electro mechanical systems (MEMS) platforms for gas sensing devices with the co-planar type micro-heaters were designed, fabricated and its effects on the In2O3 gas sensors were investigated. Micro-heaters in MEMS gas sensor platforms were designed in the four-type heater patterns with different geometries. Electro-thermal characterizations showed that the designed platforms had highly thermal efficiency because the micro hot-plate structures were formed in the diaphragm and the thermal efficiencies were analyzed for all of 16 models and compared with each other, respectively. The designed micro-platforms were fabricated by MEMS process, and Indium oxide (In2O3) nanoparticles were synthesized by sol-gel process and dropped on the MEMS platforms for detecting the noxious oxide gas (NO2) Fabricated micro-platforms had a very low power consumption in the fabricated 16-type models, especially, the minimum power consumption was 41 mW at the operating temperature of 250 degrees C. After experiments on gas sensing characteristics to NO2 gases, fabricated In2O3 gas sensors had almost the same gas sensitivity (Rs) at the operation temperature of 250 degrees C. It is concluded that the micro-heater geometries, pattern shapes and sizes, can be influential on the power consumption of the devices and its gas sensing characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA