Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(6): 5821-5833, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36881690

RESUMO

In this study, a fibriform electrochemical diode capable of performing rectifying, complementary logic and device protection functions for future e-textile circuit systems is fabricated. The diode was fabricated using a simple twisted assembly of metal/polymer semiconductor/ion gel coaxial microfibers and conducting microfiber electrodes. The fibriform diode exhibited a prominent asymmetrical current flow with a rectification ratio of over 102, and its performance was retained after repeated bending deformations and washings. Fundamental studies on the electrochemical interactions of polymer semiconductors with ions reveal that the Faradaic current generated in polymer semiconductors by electrochemical reactions results in an abrupt current increase under a forward bias, in which the threshold voltages of the device are determined by the oxidation or reduction potential of the polymer semiconductor. Textile-embedded full-wave rectifiers and logic gate circuits were implemented by simply integrating the fibriform diodes, exhibiting AC-to-DC signal conversion and logic operation functions, respectively. It was also confirmed that the proposed fibriform diode can suppress transient voltages and thus protect a low-voltage operational wearable e-textile circuit.

2.
Animals (Basel) ; 12(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290217

RESUMO

Lithobates catesbeianus (American bullfrog), known to be one of the notorious invasive species, was introduced to South Korea and has proliferated in the Korean natural environment for the past 25 years. The ecological impact caused by the species is well known, and several management decisions have been implemented to cull its population. However, the effectiveness of past control decisions is largely unknown. We built a population dynamics model for L. catesbeianus in the Onseok reservoir, South Korea, using STELLA architect software. The population model was based on the demographics and ecological process of the species developing through several life stages, with respective parameters for survivorship and carrying capacity. Control scenarios with varying intensities were simulated to evaluate their effectiveness. The limitations of isolated control methods and the importance of integrated management are shown in our results. The population of the American bullfrog in the reservoir was reduced to a manageable level under intensive control of the tadpole stage, using three sets of double fyke nets and 80% direct removal of juvenile and adult stages. According to our results, integrated, intensive, and continuous control is essential for managing the invasive American bullfrog population. Finally, our modeling approach can assist in determining the control intensity to improve the efficiency of measures against L. catesbeianus.

3.
Mater Horiz ; 9(11): 2846-2853, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36052699

RESUMO

We successfully develop a self-powered image array (IA) composed of 16 touch-free sensors (TFSs) fabricated with semiconductor InN nanowires (NWs) as a response medium. Without using a power supply, the InN-NW TFS can detect the position of a human hand 30 cm away from the device surface. It also distinguishes different materials such as polyimide, Al foil, printing paper, latex, and polyvinyl chloride in non-contact mode at a distance of 1 cm. The self-powered TFS-IA clearly distinguishes square-shaped transparent polydimethylsiloxane film attached to the back of a human hand positioned 5 cm from the device, indicating the possibility for detecting changes in the surface texture of human skin, such as skin burns or skin cancer. The performance of the self-powered TFS and TFS-IA is attributed to high electrostatic induction of InN NWs by external triboelectricity resulting from the simple movement of the target object, which differs markedly from conventional sensors designed to detect variations in the temperature or light essentially using a power supply.


Assuntos
Nanofios , Humanos , Fontes de Energia Elétrica , Semicondutores
4.
Artigo em Inglês | MEDLINE | ID: mdl-35886129

RESUMO

(1) Background: Recent economic developments in South Korea have shifted people's interest in forests from provisioning to cultural services such as forest healing. Although policymakers have attempted to designate more forests for healing purposes, there are few established standards for carrying out such designations based on the quantified estimation. (2) Methods: We suggest a modeling approach to estimate and analyze the emission rate of human-beneficial terpenes. For this purpose, we adopted and modified the Model of Emissions of Gases and Aerosols from Nature (MEGAN), a commonly used biogenic volatile organic compounds (BVOCs) estimation model which was suitable for estimating the study site's terpene emissions. We estimated the terpene emission rate for the whole year and analyzed the diurnal and seasonal patterns. (3) Results: The results from our model correspond well with other studies upon comparing temporal patterns and ranges of values. According to our study, the emission rate of terpenes varies significantly temporally and spatially. The model effectively predicted spatiotemporal patterns of terpene emission in the study site. (4) Conclusions: The modeling approach in our study is suitable for quantifying human-beneficial terpene emission and helping policymakers and forest managers plan the efficient therapeutic use of forests.


Assuntos
Terpenos , Compostos Orgânicos Voláteis , Aerossóis , Florestas , Humanos , Projetos Piloto
5.
Small Methods ; 6(6): e2200116, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35460198

RESUMO

Molybdenum disulfide (MoS2 ) is considered a fascinating material for next-generation semiconducting applications due to its outstanding mechanical stability and direct transition characteristics comparable to silicon. However, its application to stretchable platforms still is a challenging issue in wearable logic devices and sensors with noble form-factors required for future industry. Here, an omnidirectionally stretchable MoS2 platform with laser-induced strained structures is demonstrated. The laser patterning induces the pyrolysis of MoS2 precursors as well as the weak adhesion between Si and SiO2 layers. The photothermal expansion of the Si layer results in the crumpling of SiO2 and MoS2 layers and the field-effect transistors with the crumpled MoS2 are found to be suitable for strain sensor applications. The electrical performance of the crumpled MoS2 depends on the degree of stretching, showing the stable omnidirectional stretchability up to 8% with approximately four times higher saturation current than its initial state. This platform is expected to be applied to future electronic devices, sensors, and so on.

7.
ACS Nano ; 14(7): 8485-8494, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32579342

RESUMO

Transition metal dichalcogenides (TMDs) have attracted significant interest as one of the key materials in future electronics such as logic devices, optoelectrical devices, and wearable electronics. However, a complicated synthesis method and multistep processes for device fabrication pose major hurdles for their practical applications. Here, we introduce a direct and rapid method for layer-selective synthesis of MoS2 and WS2 structures in wafer-scale using a pulsed laser annealing system (λ = 1.06 µm, pulse duration ∼100 ps) in ambient conditions. The precursor layer of each TMD, which has at least 3 orders of magnitude higher absorption coefficient than those of neighboring layers, rigorously absorbed the incoming energy of the laser pulse and rapidly pyrolyzed in a few nanoseconds, enabling the generation of a MoS2 or WS2 layer without damaging the adjacent layers of SiO2 or polymer substrate. Through experimental and theoretical studies, we establish the underlying principles of selective synthesis and optimize the laser annealing conditions, such as laser wavelength, output power, and scribing speed, under ambient condition. As a result, individual homostructures of patterned MoS2 and WS2 layers were directly synthesized on a 4 in. wafer. Moreover, a consecutive synthesis of the second layer on top of the first synthesized layer realized a vertically stacked WS2/MoS2 heterojunction structure, which can be treated as a cornerstone of electronic devices. As a proof of concept, we demonstrated the behavior of a MoS2-based field-effect transistor, a skin-attachable motion sensor, and a MoS2/WS2-based heterojunction diode in this study. The ultrafast and selective synthesis of the TMDs suggests an approach to the large-area/mass production of functional heterostructure-based electronics.

8.
PLoS One ; 12(8): e0183205, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28837590

RESUMO

Nitrogen (N) and phosphorus (P) in topsoils are critical for plant nutrition. Relatively little is known about the spatial patterns of N and P in the organic layer of mountainous landscapes. Therefore, the spatial distributions of N and P in both the organic layer and the A horizon were analyzed using a light detection and ranging (LiDAR) digital elevation model and vegetation metrics. The objective of the study was to analyze the effect of vegetation and topography on the spatial patterns of N and P in a small watershed covered by forest in South Korea. Soil samples were collected using the conditioned latin hypercube method. LiDAR vegetation metrics, the normalized difference vegetation index (NDVI), and terrain parameters were derived as predictors. Spatial explicit predictions of N/P ratios were obtained using a random forest with uncertainty analysis. We tested different strategies of model validation (repeated 2-fold to 20-fold and leave-one-out cross validation). Repeated 10-fold cross validation was selected for model validation due to the comparatively high accuracy and low variance of prediction. Surface curvature was the best predictor of P contents in the organic layer and in the A horizon, while LiDAR vegetation metrics and NDVI were important predictors of N in the organic layer. N/P ratios increased with surface curvature and were higher on the convex upper slope than on the concave lower slope. This was due to P enrichment of the soil on the lower slope and a more even spatial distribution of N. Our digital soil maps showed that the topsoils on the upper slopes contained relatively little P. These findings are critical for understanding N and P dynamics in mountainous ecosystems.


Assuntos
Nitrogênio/análise , Fósforo/análise , Chuva , Solo/química , Monitoramento Ambiental , Modelos Teóricos , República da Coreia
9.
Artigo em Inglês | MEDLINE | ID: mdl-27074804

RESUMO

Comprehensive knowledge of genomic variants in a biological context is key for precision medicine. As next-generation sequencing technologies improve, the amount of literature containing genomic variant data, such as new functions or related phenotypes, rapidly increases. Because numerous articles are published every day, it is almost impossible to manually curate all the variant information from the literature. Many researchers focus on creating an improved automated biomedical natural language processing (BioNLP) method that extracts useful variants and their functional information from the literature. However, there is no gold-standard data set that contains texts annotated with variants and their related functions. To overcome these limitations, we introduce a Biomedical entity Relation ONcology COrpus (BRONCO) that contains more than 400 variants and their relations with genes, diseases, drugs and cell lines in the context of cancer and anti-tumor drug screening research. The variants and their relations were manually extracted from 108 full-text articles. BRONCO can be utilized to evaluate and train new methods used for extracting biomedical entity relations from full-text publications, and thus be a valuable resource to the biomedical text mining research community. Using BRONCO, we quantitatively and qualitatively evaluated the performance of three state-of-the-art BioNLP methods. We also identified their shortcomings, and suggested remedies for each method. We implemented post-processing modules for the three BioNLP methods, which improved their performance.Database URL:http://infos.korea.ac.kr/bronco.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Doença/genética , Genômica , Mapeamento Cromossômico , Análise Mutacional de DNA , Curadoria de Dados , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA