Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mach Intell ; 5(8): 933-946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615030

RESUMO

Parkinson's disease is a common, incurable neurodegenerative disorder that is clinically heterogeneous: it is likely that different cellular mechanisms drive the pathology in different individuals. So far it has not been possible to define the cellular mechanism underlying the neurodegenerative disease in life. We generated a machine learning-based model that can simultaneously predict the presence of disease and its primary mechanistic subtype in human neurons. We used stem cell technology to derive control or patient-derived neurons, and generated different disease subtypes through chemical induction or the presence of mutation. Multidimensional fluorescent labelling of organelles was performed in healthy control neurons and in four different disease subtypes, and both the quantitative single-cell fluorescence features and the images were used to independently train a series of classifiers to build deep neural networks. Quantitative cellular profile-based classifiers achieve an accuracy of 82%, whereas image-based deep neural networks predict control and four distinct disease subtypes with an accuracy of 95%. The machine learning-trained classifiers achieve their accuracy across all subtypes, using the organellar features of the mitochondria with the additional contribution of the lysosomes, confirming the biological importance of these pathways in Parkinson's. Altogether, we show that machine learning approaches applied to patient-derived cells are highly accurate at predicting disease subtypes, providing proof of concept that this approach may enable mechanistic stratification and precision medicine approaches in the future.

2.
NPJ Parkinsons Dis ; 8(1): 162, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424392

RESUMO

Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small ß-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.

4.
Nat Neurosci ; 25(9): 1134-1148, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36042314

RESUMO

Aggregation of alpha-synuclein (α-Syn) drives Parkinson's disease (PD), although the initial stages of self-assembly and structural conversion have not been directly observed inside neurons. In this study, we tracked the intracellular conformational states of α-Syn using a single-molecule Förster resonance energy transfer (smFRET) biosensor, and we show here that α-Syn converts from a monomeric state into two distinct oligomeric states in neurons in a concentration-dependent and sequence-specific manner. Three-dimensional FRET-correlative light and electron microscopy (FRET-CLEM) revealed that intracellular seeding events occur preferentially on membrane surfaces, especially at mitochondrial membranes. The mitochondrial lipid cardiolipin triggers rapid oligomerization of A53T α-Syn, and cardiolipin is sequestered within aggregating lipid-protein complexes. Mitochondrial aggregates impair complex I activity and increase mitochondrial reactive oxygen species (ROS) generation, which accelerates the oligomerization of A53T α-Syn and causes permeabilization of mitochondrial membranes and cell death. These processes were also observed in induced pluripotent stem cell (iPSC)-derived neurons harboring A53T mutations from patients with PD. Our study highlights a mechanism of de novo α-Syn oligomerization at mitochondrial membranes and subsequent neuronal toxicity.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Cardiolipinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
5.
Mov Disord ; 37(8): 1612-1623, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699244

RESUMO

BACKGROUND: Type 2 diabetes (T2DM) is an established risk factor for developing Parkinson's disease (PD), but its effect on disease progression is not well understood. OBJECTIVE: The aim of this study was to investigate the influence of T2DM on aspects of disease progression in PD. METHODS: We analyzed data from the Tracking Parkinson's study to examine the effects of comorbid T2DM on PD progression and quality of life by comparing symptom severity scores assessing a range of motor and nonmotor symptoms. RESULTS: We identified 167 (8.7%) patients with PD and T2DM (PD + T2DM) and 1763 (91.3%) patients with PD without T2DM (PD). After controlling for confounders, patients with T2DM had more severe motor symptoms, as assessed by Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III (25.8 [0.9] vs. 22.5 [0.3] P = 0.002), and nonmotor symptoms, as assessed by Non-Motor Symptoms Scale total (38.4 [2.5] vs. 31.8 [0.7] P < 0.001), and were significantly more likely to report loss of independence (odds ratio, 2.08; 95% confidence interval [CI]: 1.34-3.25; P = 0.001) and depression (odds ratio, 1.62; CI: 1.10-2.39; P = 0.015). Furthermore, over time, patients with T2DM had significantly faster motor symptom progression (P = 0.012), developed worse mood symptoms (P = 0.041), and were more likely to develop substantial gait impairment (hazard ratio, 1.55; CI: 1.07-2.23; P = 0.020) and mild cognitive impairment (hazard ratio, 1.7; CI: 1.24-2.51; P = 0.002) compared with the PD group. CONCLUSIONS: In the largest study to date, T2DM is associated with faster disease progression in Parkinson's, highlighting an interaction between these two diseases. Because it is a potentially modifiable metabolic state, with multiple peripheral and central targets for intervention, it may represent a target for alleviating parkinsonian symptoms and slowing progression to disability and dementia. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doença de Parkinson , Disfunção Cognitiva/complicações , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Progressão da Doença , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Qualidade de Vida/psicologia
8.
Cell Death Differ ; 27(10): 2781-2796, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32341450

RESUMO

Protein aggregation and abnormal lipid homeostasis are both implicated in neurodegeneration through unknown mechanisms. Here we demonstrate that aggregate-membrane interaction is critical to induce a form of cell death called ferroptosis. Importantly, the aggregate-membrane interaction that drives ferroptosis depends both on the conformational structure of the aggregate, as well as the oxidation state of the lipid membrane. We generated human stem cell-derived models of synucleinopathy, characterized by the intracellular formation of α-synuclein aggregates that bind to membranes. In human iPSC-derived neurons with SNCA triplication, physiological concentrations of glutamate and dopamine induce abnormal calcium signaling owing to the incorporation of excess α-synuclein oligomers into membranes, leading to altered membrane conductance and abnormal calcium influx. α-synuclein oligomers further induce lipid peroxidation. Targeted inhibition of lipid peroxidation prevents the aggregate-membrane interaction, abolishes aberrant calcium fluxes, and restores physiological calcium signaling. Inhibition of lipid peroxidation, and reduction of iron-dependent accumulation of free radicals, further prevents oligomer-induced toxicity in human neurons. In summary, we report that peroxidation of polyunsaturated fatty acids underlies the incorporation of ß-sheet-rich aggregates into the membranes, and that additionally induces neuronal death. This suggests a role for ferroptosis in Parkinson's disease, and highlights a new mechanism by which lipid peroxidation causes cell death.


Assuntos
Cálcio/metabolismo , Ferroptose , Ferro/metabolismo , Peroxidação de Lipídeos , Doença de Parkinson , alfa-Sinucleína/metabolismo , Células Cultivadas , Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Pluripotentes Induzidas , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
9.
Commun Biol ; 3(1): 79, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071389

RESUMO

The molecular events causing memory loss and neuronal cell death in Alzheimer's disease (AD) over time are still unknown. Here we found that picomolar concentrations of soluble oligomers of synthetic beta amyloid (Aß42) aggregates incubated with BV2 cells or rat astrocytes caused a sensitised response of Toll-like receptor 4 (TLR4) with time, leading to increased production of TNF-α. Aß aggregates caused long term potentiation (LTP) deficit in hippocampal slices and predominantly neuronal cell death in co-cultures of astrocytes and neurons, which was blocked by TLR4 antagonists. Soluble Aß aggregates cause LTP deficit and neuronal death via an autocrine/paracrine mechanism due to TLR4 signalling. These findings suggest that the TLR4-mediated inflammatory response may be a key pathophysiological process in AD.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Neurônios/fisiologia , Agregados Proteicos/fisiologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Animais Recém-Nascidos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Mamíferos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/fisiopatologia , Agregação Patológica de Proteínas/psicologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
11.
Acta Neuropathol ; 137(1): 103-120, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30225556

RESUMO

Despite the wealth of genomic and transcriptomic data in Parkinson's disease (PD), the initial molecular events are unknown. Using LD score regression analysis, we show significant enrichment in PD heritability within regulatory sites for LPS-activated monocytes and that TLR4 expression is highest within human substantia nigra, the most affected brain region, suggesting a role for TLR4 inflammatory responses. We then performed extended incubation of cells with physiological concentrations of small alpha-synuclein oligomers observing the development of a TLR4-dependent sensitized inflammatory response with time, including TNF-α production. ROS and cell death in primary neuronal cultures were significantly reduced by TLR4 antagonists revealing that an indirect inflammatory mechanism involving cytokines produced by glial cells makes a major contribution to neuronal death. Prolonged exposure to low levels of alpha-synuclein oligomers sensitizes TLR4 responsiveness in astrocytes and microglial, explaining how they become pro-inflammatory, and may be an early causative event in PD.


Assuntos
Astrócitos/metabolismo , Microglia/metabolismo , Doença de Parkinson/metabolismo , Receptor 4 Toll-Like/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular , Citocinas/metabolismo , Humanos , Inflamação/patologia , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/patologia , Substância Negra/patologia
12.
FEBS J ; 285(19): 3631-3644, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29924502

RESUMO

Misfolding and aggregation of the proteins amyloid-ß, tau and alpha-synuclein is the predominant pathology underlying the neurodegenerative disorders, Alzheimer's and Parkinson's disease. While end stage insoluble products of aggregation have been well characterised in human and animal models of disease, accumulating evidence from biophysical, cellular and in vivo studies has shown that soluble intermediates of aggregation, or oligomers, may be the key species that mediate toxicity and underlie seeding and spreading in disease. Here, we review the process of protein misfolding, and the intrinsic and extrinsic processes that cause the native states of the key aggregating proteins to undergo conformational change to form oligomers and ultimately fibrils. We discuss the structural features of the key toxic intermediate, and describe the putative mechanisms by which oligomers may cause cell toxicity. Finally, we explore the potential therapeutic approaches raised by the oligomer hypothesis in neurodegenerative disease.


Assuntos
Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Doença de Parkinson/fisiopatologia , Agregados Proteicos , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/química , Animais , Humanos , Conformação Proteica , alfa-Sinucleína/química , Proteínas tau/química
13.
Nat Commun ; 9(1): 2293, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895861

RESUMO

Protein aggregation causes α-synuclein to switch from its physiological role to a pathological toxic gain of function. Under physiological conditions, monomeric α-synuclein improves ATP synthase efficiency. Here, we report that aggregation of monomers generates beta sheet-rich oligomers that localise to the mitochondria in close proximity to several mitochondrial proteins including ATP synthase. Oligomeric α-synuclein impairs complex I-dependent respiration. Oligomers induce selective oxidation of the ATP synthase beta subunit and mitochondrial lipid peroxidation. These oxidation events increase the probability of permeability transition pore (PTP) opening, triggering mitochondrial swelling, and ultimately cell death. Notably, inhibition of oligomer-induced oxidation prevents the pathological induction of PTP. Inducible pluripotent stem cells (iPSC)-derived neurons bearing SNCA triplication, generate α-synuclein aggregates that interact with the ATP synthase and induce PTP opening, leading to neuronal death. This study shows how the transition of α-synuclein from its monomeric to oligomeric structure alters its functional consequences in Parkinson's disease.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Técnicas de Cocultura , Células-Tronco Embrionárias/metabolismo , Humanos , Peroxidação de Lipídeos , Poro de Transição de Permeabilidade Mitocondrial , Oxirredução , Técnicas de Patch-Clamp , Permeabilidade , Proteômica , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
14.
BMC Biol ; 15(1): 57, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673288

RESUMO

BACKGROUND: The aggregation of the protein ɑ-synuclein (ɑS) underlies a range of increasingly common neurodegenerative disorders including Parkinson's disease. One widely explored therapeutic strategy for these conditions is the use of antibodies to target aggregated ɑS, although a detailed molecular-level mechanism of the action of such species remains elusive. Here, we characterize ɑS aggregation in vitro in the presence of two ɑS-specific single-domain antibodies (nanobodies), NbSyn2 and NbSyn87, which bind to the highly accessible C-terminal region of ɑS. RESULTS: We show that both nanobodies inhibit the formation of ɑS fibrils. Furthermore, using single-molecule fluorescence techniques, we demonstrate that nanobody binding promotes a rapid conformational conversion from more stable oligomers to less stable oligomers of ɑS, leading to a dramatic reduction in oligomer-induced cellular toxicity. CONCLUSIONS: The results indicate a novel mechanism by which diseases associated with protein aggregation can be inhibited, and suggest that NbSyn2 and NbSyn87 could have significant therapeutic potential.


Assuntos
Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Ligação Proteica
15.
Sci Rep ; 6: 33928, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27671749

RESUMO

The protein alpha-synuclein (αS) self-assembles into toxic beta-sheet aggregates in Parkinson's disease, while it is proposed that αS forms soluble alpha-helical multimers in healthy neurons. Here, we have made αS multimers in vitro using arachidonic acid (ARA), one of the most abundant fatty acids in the brain, and characterized them by a combination of bulk experiments and single-molecule FÓ§rster resonance energy transfer (sm-FRET) measurements. The data suggest that ARA-induced oligomers are alpha-helical, resistant to fibril formation, more prone to disaggregation, enzymatic digestion and degradation by the 26S proteasome, and lead to lower neuronal damage and reduced activation of microglia compared to the oligomers formed in the absence of ARA. These multimers can be formed at physiologically-relevant concentrations, and pathological mutants of αS form less multimers than wild-type αS. Our work provides strong biophysical evidence for the formation of alpha-helical multimers of αS in the presence of a biologically relevant fatty acid, which may have a protective role with respect to the generation of beta-sheet toxic structures during αS fibrillation.

16.
Proc Natl Acad Sci U S A ; 113(9): E1206-15, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884195

RESUMO

The protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation. Here, by a combination of single-molecule fluorescence measurements and kinetic analysis, we find that the reaction in solution involves two unimolecular structural conversion steps, from the disordered to more compact oligomers and then to fibrils, which can elongate by further monomer addition. We have obtained individual rate constants for these key microscopic steps by applying a global kinetic analysis to both the decrease in the concentration of monomeric protein molecules and the increase in oligomer concentrations over a 0.5-140-µM range of αS. The resulting explicit kinetic model of αS aggregation has been used to quantitatively explore seeding the reaction by either the compact oligomers or fibrils. Our predictions reveal that, although fibrils are more effective at seeding than oligomers, very high numbers of seeds of either type, of the order of 10(4), are required to achieve efficient seeding and bypass the slow generation of aggregates through primary nucleation. Complementary cellular experiments demonstrated that two orders of magnitude lower numbers of oligomers were sufficient to generate high levels of reactive oxygen species, suggesting that effective templated seeding is likely to require both the presence of template aggregates and conditions of cellular stress.


Assuntos
Modelos Biológicos , Príons/metabolismo , alfa-Sinucleína/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Espécies Reativas de Oxigênio/metabolismo
17.
Hippocampus ; 26(4): 517-29, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26443687

RESUMO

Adult hippocampal neurogenesis is a highly dynamic process in which new cells are born, but only some of which survive. Of late it has become clear that these surviving newborn neurons have functional roles, most notably in certain forms of memory. Conventional methods to look at adult neurogenesis are based on the quantification of the number of newly born neurons using a simple cell counting methodology. However, this type of approach fails to capture the dynamic aspects of the neurogenic process, where neural proliferation, death and differentiation take place continuously and simultaneously. In this paper, we propose a simple mathematical approach to better understand the adult neurogenic process in the hippocampus which in turn will allow for a better analysis of this process in disease states and following drug therapies.


Assuntos
Hipocampo/fisiologia , Modelos Neurológicos , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Área Sob a Curva , Bromodesoxiuridina , Contagem de Células/métodos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Fármacos do Sistema Nervoso Central/farmacologia , Proteínas do Domínio Duplacortina , Fluoxetina/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...