Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(3): 768-859, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38241488

RESUMO

Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.

2.
Nanomicro Lett ; 16(1): 45, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060071

RESUMO

Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.

3.
ACS Nano ; 17(20): 20013-20023, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37787474

RESUMO

Mechanically deformable photodetectors (PDs) are key device components for wearable health monitoring systems based on photoplethysmography (PPG). Achieving high detectivity, fast response time, and an ultrathin form factor in the PD is highly needed for next-generation wearable PPG systems. Self-powered operation without a bulky power-supply unit is also beneficial for point-of-care application. Here, we propose ultrathin self-powered PDs using heavy-metal-free Cu-In-Se quantum dots (QDs), which enable high-performance wearable PPG systems. Although the light-absorbing QD layer is extremely thin (∼40 nm), the developed PD exhibits excellent performance (specific detectivity: 2.10 × 1012 Jones, linear dynamic range: 102 dB, and spectral range: 250-1050 nm at zero bias), which is comparable to that of conventional rigid QD-PDs employing thick Pb-chalcogenide QD layers. This is attributed to material and device strategies─materials that include Cu-In-Se QDs, a MoS2-nanosheet-blended poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer, a ZnO nanoparticle electron transport layer, Ag and ITO electrodes, and an ultrathin form factor (∼120 nm except the electrodes) that enable excellent mechanical deformability. These allow the successful application of QD-PDs to a wearable system for real-time PPG monitoring, expanding their potential in the field of mobile bioelectronics.


Assuntos
Metais Pesados , Nanopartículas , Pontos Quânticos , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Eletrodos
4.
ACS Omega ; 8(6): 5209-5224, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816688

RESUMO

With the advance in information technologies involving machine vision applications, the demand for energy- and time-efficient acquisition, transfer, and processing of a large amount of image data has rapidly increased. However, current architectures of the machine vision system have inherent limitations in terms of power consumption and data latency owing to the physical isolation of image sensors and processors. Meanwhile, synaptic optoelectronic devices that exhibit photoresponse similar to the behaviors of the human synapse enable in-sensor preprocessing, which makes the front-end part of the image recognition process more efficient. Herein, we review recent progress in the development of synaptic optoelectronic devices using functional nanomaterials and their unique interfacial characteristics. First, we provide an overview of representative functional nanomaterials and device configurations for the synaptic optoelectronic devices. Then, we discuss the underlying physics of each nanomaterial in the synaptic optoelectronic device and explain related device characteristics that allow for the in-sensor preprocessing. We also discuss advantages achieved by the application of the synaptic optoelectronic devices to image preprocessing, such as contrast enhancement and image filtering. Finally, we conclude this review and present a short prospect.

5.
Sci Adv ; 8(43): eadd0697, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36288304

RESUMO

High-definition red/green/blue (RGB) pixels and deformable form factors are essential for the next-generation advanced displays. Here, we present ultrahigh-resolution full-color perovskite nanocrystal (PeNC) patterning for ultrathin wearable displays. Double-layer transfer printing of the PeNC and organic charge transport layers is developed, which prevents internal cracking of the PeNC film during the transfer printing process. This results in RGB pixelated PeNC patterns of 2550 pixels per inch (PPI) and monochromic patterns of 33,000 line pairs per inch with 100% transfer yield. The perovskite light-emitting diodes (PeLEDs) with transfer-printed active layers exhibit outstanding electroluminescence characteristics with remarkable external quantum efficiencies (15.3, 14.8, and 2.5% for red, green, and blue, respectively), which are high compared to the printed PeLEDs reported to date. Furthermore, double-layer transfer printing enables the fabrication of ultrathin multicolor PeLEDs that can operate on curvilinear surfaces, including human skin, under various mechanical deformations. These results highlight that PeLEDs are promising for high-definition full-color wearable displays.

6.
Sci Adv ; 8(41): eabq3101, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223475

RESUMO

Synaptic photodetectors exhibit photon-triggered synaptic plasticity, which thus can improve the image recognition rate by enhancing the image contrast. However, still, the visualization and recognition of invisible ultraviolet (UV) patterns are challenging, owing to intense background noise. Here, inspired by all-or-none potentiation of synapse, we develop an integrated device of synaptic phototransistors (SPTrs) and quantum dot light-emitting diodes (QLEDs), facilitating noise reduction and visualization of UV patterns through on-device preprocessing. The SPTrs convert noisy UV inputs into a weighted photocurrent, which is applied to the QLEDs as a voltage input through an external current-voltage-converting circuit. The threshold switching characteristics of the QLEDs result in amplified current and visible illumination by the suprathreshold input voltage or nearly zero current and no visible illumination by the input voltage below the threshold. The preprocessing of image data with the SPTr-QLED can amplify the image contrast, which is helpful for high-accuracy image recognition.

8.
Nat Commun ; 13(1): 5262, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071063

RESUMO

Optical three-dimensional (3D) printing techniques have attracted tremendous attention owing to their applicability to mask-less additive manufacturing, which enables the cost-effective and straightforward creation of patterned architectures. However, despite their potential use as alternatives to traditional lithography, the printable materials obtained from these methods are strictly limited to photocurable resins, thereby restricting the functionality of the printed objects and their application areas. Herein, we report a generalised direct optical printing technique to obtain functional metal chalcogenides via digital light processing. We developed universally applicable photocurable chalcogenidometallate inks that could be directly used to create 2D patterns or micrometre-thick 2.5D architectures of various sizes and shapes. Our process is applicable to a diverse range of functional metal chalcogenides for compound semiconductors and 2D transition-metal dichalcogenides. We then demonstrated the feasibility of our technique by fabricating and evaluating a micro-scale thermoelectric generator bearing tens of patterned semiconductors. Our approach shows potential for simple and cost-effective architecturing of functional inorganic materials.

9.
Nanoscale Horiz ; 7(8): 801-821, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35686540

RESUMO

Stretchable displays have recently received increasing attention as input and/or output interfaces for next-generation human-friendly electronic systems. Stretchable electroluminescent (EL) devices are a core component of stretchable displays, and they can be classified into two types, structurally stretchable EL devices and intrinsically stretchable EL devices, according to the mechanism for achieving their stretchability. We herein present recent advances in materials and design strategies for stretchable EL devices. First, stretchable devices based on ultrathin EL devices are introduced. Ultrathin EL devices are mechanically flexible like thin paper, and they can become stretchable through various structural engineering methods, such as inducing a buckled structure, employing interconnects with stretchable geometries, and applying origami/kirigami techniques. Secondly, intrinsically stretchable EL devices can be fabricated by using inherently stretchable electronic materials. For example, light-emitting electrochemical cells and EL devices with a simpler structure using alternating current have been developed. Furthermore, novel stretchable semiconductor materials have been presented for the development of intrinsically stretchable light-emitting diodes. After discussing these two types of stretchable EL devices, we briefly discuss applications of deformable EL devices and conclude the review.


Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Humanos
10.
Adv Mater ; 33(23): e2100066, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33929062

RESUMO

Compared with the large plastic deformation observed in ductile metals and organic materials, inorganic semiconductors have limited plasticity (<0.2%) due to their intrinsic bonding characters, restricting their widespread applications in stretchable electronics. Herein, the solution-processed synthesis of ductile α-Ag2 S thin films and fabrication of all-inorganic, self-powered, and stretchable memory devices, is reported. Molecular Ag2 S complex solution is synthesized by chemical reduction of Ag2 S powder, fabricating wafer-scale highly crystalline Ag2 S thin films. The thin films show stretchability due to the intrinsic ductility, sustaining the structural integrity at a tensile strain of 14.9%. Moreover, the fabricated Ag2 S-based resistive random access memory presents outstanding bipolar switching characteristics (Ion /Ioff ratio of ≈105 , operational endurance of 100 cycles, and retention time >106 s) as well as excellent mechanical stretchability (no degradation of properties up to stretchability of 52%). Meanwhile, the device is highly durable under diverse chemical environments and temperatures from -196 to 300 °C, especially maintaining the properties for 168 h in 85% relative humidity and 85 °C. A self-powered memory combined with motion sensors for use as a wearable healthcare monitoring system is demonstrated, offering the potential for designing high-performance wearable electronics that are usable in daily life in a real-world setting.

11.
Macromol Rapid Commun ; 42(9): e2100011, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33690960

RESUMO

Hydrogels are attractive, active materials for various e-skin devices based on their unique functionalities such as flexibility and biocompatibility. Still, e-skin devices are generally limited to simple structures, and the realization of optimal-shaped 3D e-skin devices for target applications is an intriguing issue of interest. Furthermore, hydrogels intrinsically suffer from drying and freezing issues in operational capability for practical applications. Herein, 3D artificial skin devices are demonstrated with highly improved device stability. The devices are fabricated in a target-oriented 3D structure by extrusion-based 3D printing, spontaneously heal mechanical damage, and enable stable device operation over time and under freezing conditions. Based on the material design to improve drying and freezing resistance, an organohydrogel, prepared by solvent displacement of hydrogel with ethylene glycol for 3 h, exhibits excellent drying resistance over 1000 h and improved freezing resistance by showing no phase transition down to -60 °C while maintaining its self-healing functionality. Based on the improved drying and freezing resistance, artificial skin devices in target-oriented optimal 3D structures are presented, which enable accurate positioning of touchpoints even on a complicated 3D structure stably over time and excellent operation at temperatures below 0 °C without losing their flexibility.


Assuntos
Pele Artificial , Condutividade Elétrica , Congelamento , Hidrogéis , Tato
12.
Nano Lett ; 21(1): 26-33, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33258610

RESUMO

Colloidal quantum dots (QDs) exhibit unique characteristics such as facile color tunability, pure color emission with extremely narrow bandwidths, high luminescence efficiency, and high photostability. In addition, quantum dot light-emitting diodes (QLEDs) feature bright electroluminescence, low turn-on voltage, and ultrathin form factor, making them a promising candidate for next-generation displays. To achieve the overarching goal of the full-color display based on the electroluminescence of QDs, however it is essential to enhance the performance of QLEDs further for each color (e.g., red, green, and blue; RGB) and develop novel techniques for patterning RGB QD pixels without cross-contamination. Here, we present state-of-the-art material, process, and device technologies for full-color QLED-based displays. First, we highlight recent advances in the development of efficient red-, green-, and blue-monochromatic QLEDs. In particular, we focus on the progress of heavy-metal-free QLEDs. Then, we describe patterning techniques for individual RGB QDs to fabricate pixelated displays. Finally, we briefly summarize applications of such QLEDs, presenting the possibility of full-color QLED-based displays.

13.
Nanoscale ; 12(19): 10456-10473, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32388540

RESUMO

Hydrogels are widely implemented as key materials in various biomedical applications owing to their soft, flexible, hydrophilic, and quasi-solid nature. Recently, however, new material properties over those of bare hydrogels have been sought for novel applications. Accordingly, hydrogel nanocomposites, i.e., hydrogels converged with nanomaterials, have been proposed for the functional transformation of conventional hydrogels. The incorporation of suitable nanomaterials into the hydrogel matrix allows the hydrogel nanocomposite to exhibit multi-functionality in addition to the biocompatible feature of the original hydrogel. Therefore, various hydrogel composites with nanomaterials, including nanoparticles, nanowires, and nanosheets, have been developed for diverse purposes, such as catalysis, environmental purification, bio-imaging, sensing, and controlled drug delivery. Furthermore, novel technologies for the patterning of such hydrogel nanocomposites into desired shapes have been developed. The combination of such material engineering and processing technologies has enabled the hydrogel nanocomposite to become a key soft component of electronic, electrochemical, and biomedical devices. We herein review the recent research trend in the field of hydrogel nanocomposites, particularly focusing on materials engineering, processing, and device applications. Furthermore, the conclusions are presented with the scope of future research outlook, which also includes the current technical limitations.


Assuntos
Nanocompostos , Nanopartículas , Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Hidrogéis , Engenharia Tecidual
14.
Nano Lett ; 19(3): 1788-1795, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30741548

RESUMO

Two dimensional (2D) materials have found various applications because of their unique physical properties. For example, graphene has been used as the electron transparent membrane for liquid cell transmission electron microscopy (TEM) due to its high mechanical strength and flexibility, single-atom thickness, chemical inertness, etc. Here, we report using 2D MoS2 as a functional substrate as well as the membrane window for liquid cell TEM, which is enabled by our facile and polymer-free MoS2 transfer process. This provides the opportunity to investigate the growth of Pt nanocrystals on MoS2 substrates, which elucidates the formation mechanisms of such heterostructured 2D materials. We find that Pt nanocrystals formed in MoS2 liquid cells have a strong tendency to align their crystal lattice with that of MoS2, suggesting a van der Waals epitaxial relationship. Importantly, we can study its impact on the kinetics of the nanocrystal formation. The development of MoS2 liquid cells will allow further study of various liquid phenomena on MoS2, and the polymer-free MoS2 transfer process will be implemented in a wide range of applications.

15.
Adv Mater ; 30(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29068560

RESUMO

Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m-2 , top: ≈30 000 cd m-2 , total: ≈73 000 cd m-2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in.-1 ) shows the potential of the full-color transparent display.

16.
Nat Commun ; 8(1): 1664, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29162854

RESUMO

Soft bioelectronic devices provide new opportunities for next-generation implantable devices owing to their soft mechanical nature that leads to minimal tissue damages and immune responses. However, a soft form of the implantable optoelectronic device for optical sensing and retinal stimulation has not been developed yet because of the bulkiness and rigidity of conventional imaging modules and their composing materials. Here, we describe a high-density and hemispherically curved image sensor array that leverages the atomically thin MoS2-graphene heterostructure and strain-releasing device designs. The hemispherically curved image sensor array exhibits infrared blindness and successfully acquires pixelated optical signals. We corroborate the validity of the proposed soft materials and ultrathin device designs through theoretical modeling and finite element analysis. Then, we propose the ultrathin hemispherically curved image sensor array as a promising imaging element in the soft retinal implant. The CurvIS array is applied as a human eye-inspired soft implantable optoelectronic device that can detect optical signals and apply programmed electrical stimulation to optic nerves with minimum mechanical side effects to the retina.


Assuntos
Dissulfetos/química , Desenho de Equipamento/métodos , Grafite/química , Molibdênio/química , Transistores Eletrônicos , Próteses Visuais , Algoritmos , Animais , Desenho de Equipamento/instrumentação , Humanos , Masculino , Modelos Teóricos , Estimulação Luminosa , Ratos Wistar , Retina/fisiologia , Visão Ocular/fisiologia
17.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833644

RESUMO

An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m-2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data.

18.
ACS Nano ; 11(6): 5992-6003, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28535341

RESUMO

Flexible and stretchable optoelectronic devices can be potentially applied in displays, biosensors, biomedicine, robotics, and energy generation. The use of nanomaterials with superior optical properties such as quantum dots (QDs) is important in the realization of wearable displays and biomedical devices, but specific structural design as well as selection of materials should preferentially accompany this technology to realize stretchable forms of these devices. Here, we report stretchable optoelectronic sensors manufactured using colloidal QDs and integrated with elastomeric substrates, whose optoelectronic properties are stable under various deformations. A graphene electrode is adopted to ensure extreme bendability of the devices. Ultrathin QD light-emitting diodes and QD photodetectors are transfer-printed onto a prestrained elastomeric layout to form wavy configurations with regular patterns. The layout is mechanically stretchable until the structure is converted to a flat configuration. The emissive and active area itself can be stretched or compressed by buckled structures, which are applicable to wearable electronic devices. We demonstrate that these stretchable optoelectronic sensors can be used for continuous monitoring of blood waves via photoplethysmography signal recording. These and related systems create important and unconventional opportunities for stretchable and foldable optoelectronic devices with health-monitoring capability and, thus, meet the demand for wearable and body-integrated electronics.

19.
Adv Mater ; 28(42): 9326-9332, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27571382

RESUMO

Large-scale colloidal synthesis and integration of uniform-sized molybdenum disulfide (MoS2 ) nanosheets for a flexible resistive random access memory (RRAM) array are presented. RRAM using MoS2 nanosheets shows a ≈10 000 times higher on/off ratio than that based on exfoliated MoS2 . The good uniformity of the MoS2 nanosheets allows wafer-scale system integration of the RRAM array with pressure sensors and quantum-dot light-emitting diodes.

20.
Nano Converg ; 3(1): 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28191414

RESUMO

As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...