Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 903: 166504, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634717

RESUMO

Since the Geostationary Ocean Color Imager (GOCI) was successfully launched in 2010, the GOCI Yonsei aerosol retrieval (YAER) algorithm has been continuously updated to retrieve hourly aerosol optical properties. GOCI-II has 4 more channels including UV, finer spatial resolution (250 m), and daily full disk coverage as compared to GOCI, and was launched in February 2020, onboard the GEO-KOMPSAT-2B (GK-2B) satellite. In this study, we extended the YAER algorithm to GOCI-II data based on its improved performance in many aspects and present the first results of aerosol optical properties retrieved from GOCI-II data. Utilizing the overlapping period between the GOCI-II and GOCI in geostationary Earth orbit, we present GOCI-II aerosol retrievals for high aerosol-loading cases over East Asia and show that these have a consistent spatial distribution with those from GOCI. Furthermore, GOCI-II provides AOD at an even higher spatial resolution, revealing finer changes in aerosol concentrations. Validation results for one year data show that the GOCI-II AOD has a correlation coefficient of 0.83 and a ratio within the expected error (EE) of 59.4 % when compared with the aerosol robotic network (AERONET) data. We compared statistical metrics for the GOCI and GOCI-II AODs to assess the consistency between the two datasets. In addition, it was found that there is a strong correlation between the two datasets from the comparison of gridded GOCI and GOCI-II AOD products. It is expected that data from GOCI-II will continue long-term aerosol records with high accuracy that can be used to address air-quality issues over East Asia.

2.
Adv Sci (Weinh) ; 9(27): e2201227, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35821385

RESUMO

A broadband, high efficiency polarized beam splitter (PBS) metagrating based on integrated resonant units (IRUs) to enable simultaneous polarization analysis, spectral dispersion, and spatial imaging in the near infrared (NIR) is developed. A PBS metagrating with a diameter of 60 mm is the key technology component of the high-resolution multiple-species atmospheric profiler in the NIR (HiMAP-NIR), which is a spaceborne instrument concept crafted to be a core payload of NASA's new generation Earth System Observatory. HiMAP-NIR will enable the aerosol profiling in Earth's planetary boundary layer (from surface to2 km altitude) by simultaneously measuring four spatial-spectral-polarimetric images from 680 to 780 nm. Through detailed optimization of hybridized resonant modes in IRUs, the PBS metagrating shows a diffraction efficiency of 70% (or better) for all four linear-polarized incident light, and polarization contrasts between orthogonal states are 0.996 (or better) from 680 to 780 nm. It meets the stringent performance required by the HiMAP-NIR exploiting a new paradigm for the broad applications of metasurfaces.

3.
Sci Total Environ ; 713: 136516, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31951839

RESUMO

Satellite-derived aerosol optical depth (AOD) products are one of main predictors to estimate ground-level particulate matter (PM10 and PM2.5) concentrations. Since AOD products, however, are only provided under high-quality conditions, missing values usually exist in areas such as clouds, cloud shadows, and bright surfaces. In this study, spatially continuous AOD and subsequent PM10 and PM2.5 concentrations were estimated over East Asia using satellite- and model-based data and auxiliary data in a Random Forest (RF) approach. Data collected from the Geostationary Ocean Color Imager (GOCI; 8 times per day) in 2016 were used to develop AOD and PM models. Three schemes (i.e. G1, A1, and A2) were proposed for AOD modeling according to target AOD data (GOCI AOD and AERONET AOD) and the existence of satellite-derived AOD. The A2 scheme showed the best performance (validation R2 of 0.74 and prediction R2 of 0.73 when GOCI AOD did not exist) and the resultant AOD was used to estimate spatially continuous PM concentrations. The PM models with location information produced successful estimation results with R2 of 0.88 and 0.90, and rRMSE of 26.9 and 27.2% for PM10 and PM2.5, respectively. The spatial distribution maps of PM well captured the seasonal and spatial characteristics of PM reported in the literature, which implies the proposed approaches can be adopted for an operational estimation of spatially continuous AOD and PMs under all sky conditions.

4.
Chemosphere ; 239: 124678, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31494323

RESUMO

In the developing countries such as China, most well-developed areas have suffered severe haze pollution, which was associated with increased premature morbidity and mortality and attracted widespread public concerns. Since ground-based PM2.5 monitoring has limited temporal and spatial coverage, satellite aerosol remote sensing data has been increasingly applied to map large-scale PM2.5 characteristics through advanced spatial statistical models. Although most existing research has taken advantage of the polar orbiting satellite instruments, a major limitation of the polar orbiting platform is its limited sampling frequency (e.g., 1-2 times/day), which is insufficient for capturing the PM2.5 variability during short but intense heavy haze episodes. As the first attempt, we quantitatively investigated the feasibility of using the aerosol optical depth (AOD) data retrieved by the Geostationary Ocean Color Imager (GOCI) to estimate hourly PM2.5 concentrations during winter haze episodes in the Yangtze River Delta (YRD). We developed a three-stage spatial statistical model, using GOCI AOD and fine mode fraction, as well as corresponding monitoring PM2.5 concentrations, meteorological and land use data on a 6-km modeling grid with complete coverage in time and space. The 10-fold cross-validation R2 was 0.72 with a regression slope of 1.01 between observed and predicted hourly PM2.5 concentrations. After gap filling, the R2 value for the three-stage model was 0.68. We further analyzed two representative large regional episodes, i.e., a "multi-process diffusion episode" during December 21-26, 2015 and a "Chinese New Year episode" during February 7-8, 2016. We concluded that AOD retrieved by geostationary satellites could serve as a new valuable data source for analyzing the heavy air pollution episodes.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Tecnologia de Sensoriamento Remoto/métodos , Aerossóis/análise , China , Meteorologia , Modelos Estatísticos , Rios , Estações do Ano , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...