Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Biotechnol ; 33(3): 689-697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38274184

RESUMO

Irradiation injury, especially caused by UVB, of the skin is one of the critical reasons for skin inflammation and damage. The present study aimed to explore the protective effect of Syzygium formosum leafy extract (SFLE) and its mechanism of action against UVB-induced damages of human keratinocytes. In this study, SFLE was prepared from 100 kg dried leaves using industrial-scale processes. We found that SFLE markedly reduced markers of the skin inflammation in UVB-induced pro-inflammatory cytokines. Only 2 µg/mL of SFLE exhibited significantly stronger anti-inflammatory effects than the fivefold concentration of positive control. Intriguingly, an anti-inflammatory enzyme, heme oxygenase-1 expression was significantly induced by SFLE treatment. MMP-3 and -9 were, but not MMP-1, significantly reduced. SFLE inhibited the expression of the MAPK pathway, resulting in a decrease on UVB-induced reactive oxygen species. In conclusion, SFLE can potentially be used to treat skin inflammatory diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01380-4.

2.
Heliyon ; 9(10): e20556, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37886743

RESUMO

Double-strand RNA(dsRNA), which can induce inflammation, can be generated by necrotic keratinocytes in the skin environment. As an analog of dsRNA, polyinosinic-polycytidylic acid (poly(I:C)) is used to induce inflammation via the Toll-like Receptor 3 (TLR3) signaling pathway. Inotodiol, isolated from Inonotus obliquus, known as Chaga mushroom, is a natural lanostane-type triterpenoid with significant pharmacological activity and notable anti-inflammatory effects. However, the functions of inotodiol on dsRNA-induced inflammation in human dermal fibroblast (HDFs) remains unclear. In this study, we evaluated the anti-inflammatory effects of inotodiol inflammation induced on by poly(I:C) in HDFs. After pre-treatment with inotodiol, poly (I:C) was used to induce inflammation. Subsequently, mRNA expression and protein secretion of inflammatory cytokines, as well as TLR3 signaling protein levels were assessed. Inflammatory cytokines IL-1ß, IL-6, and TNF-α's increased mRNA expression by poly(I:C) in HDFs was significantly suppressed in the inotodiol pre-treatment group in a dose-dependent manner. A similar pattern was evaluated in the protein levels of these three cytokines. The inflammatory signals of TLR3 via p-IKK, p-p38, and NF-κB was reduced by inotodiol pre-treatment. Taken together, inotodiol possesses strong anti-inflammatory activity against poly(I:C)-induced inflammation in HDFs. Therefore, our findings support potential application of inotodiol as an effective anti-inflammatory agent in cosmetics.

3.
J Control Release ; 355: 199-210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36750146

RESUMO

Bacterial cancer therapies aim to manipulate bacteria to effectively deploy therapeutic payloads to tumors. Attenuated bacteria alone often cannot eradicate solid tumors. Attenuated Salmonella can be engineered to deliver cytotoxic drugs to either trigger an immune response or increase antitumor efficacy when combined with chemotherapeutic drugs. However, the extracellular matrix (ECM) surrounding cancer cells forms a barrier that often limits the ability of chemotherapeutic and cytotoxic drugs to penetrate and eliminate tumors. To overcome this limitation, we developed a strategy to combine chemotherapy with an attenuated Salmonella typhimurium strain engineered to secrete HysA protein (from Staphylococcus aureus; Hyaluronidase, HAase) in tumors. The engineered Salmonella effectively degraded hyaluronan (HA), which is a major ECM constituent in tumors, and suppressed tumor growth in mouse models of pancreatic adenocarcinoma (ASPC-1) and breast cancer (4T1). Furthermore, it prolonged survival when combined with chemotherapeutic drugs (doxorubicin or gemcitabine). Upon bacterial colonization, the HAase-mediated ECM degradation decreased interstitial fluid pressure (IFP) in the tumor microenvironment. Additionally, HA degradation using HAase-expressing bacteria in vivo led to decreased binding to the receptor, CD44, expressed in tumors. This may modulate proliferation- and apoptosis-related signal pathways. Therefore, ECM-targeting bacteria can be used as a synergistic anticancer therapeutic agent to maximize chemotherapeutic drug delivery into highly invasive tumors.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Adenocarcinoma/tratamento farmacológico , Líquido Extracelular/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral
4.
Curr Microbiol ; 80(2): 65, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602627

RESUMO

The bacterial strain AGMB10547T was isolated from cow faeces deposited by the National Institute of Animal Science in Cheonan, Republic of Korea. The strain AGMB10547T possessed the phenotypic, biochemical and chemotaxonomic characteristics of the bacteria of the family Oscillospiraceae. The isolate was obligately anaerobic, non-motile, Gram-positive and rod-shaped bacteria. The growth of strain AGMB10547T occurred within 35-40 °C (optimum at 37 °C), at pH 6-7 (optimum of 7) and in the presence of 0.5-2.0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain AGMB10547T belonged to the genus Caproiciproducens and was most closely related to Caproiciproducens galactitolivorans BS-1T (96.9%). The DNA G+C content was 49.0 mol%. The major cellular fatty acids (> 10%) of the isolate were C14:0, C14:0 DMA, C16:1 ω9c and C16:0. The average nucleotide identity (ANI) and digital DNA-DNA Hybridization (dDDH) values between strain AGMB10547T and C. galactitolivorans BS-1T were 75.5% and 19.2%. Based on the phenotypic, genotypic, biochemical and chemotaxonomic analyses, strain AGMB10547T represents a novel species of the genus Caproiciproducens, for which the name Caproiciproducens faecalis sp. nov. is proposed. The type strain AGMB10547T (=KCTC 25200T=NBRC 115006T=GDMCC 1.2575T).


Assuntos
Ácidos Graxos , Lactobacillales , Animais , Bovinos , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Lactobacillales/genética , Hibridização de Ácido Nucleico , Fezes/microbiologia , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fosfolipídeos/química
5.
Biomed Pharmacother ; 153: 113311, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35759867

RESUMO

Oxidative damage is one of the major causes of human skin aging. Inotodiol is a lanostane triterpenoid that demonstrates antiviral, anticancer, and anti-inflammatory activities. Previous studies have reported that inotodiol also has antiallergic effects. However, whether inotodiol inhibits oxidative stress-induced human skin aging is not known. Stimulation of human dermal fibroblast cells with hydrogen peroxide is related to skin aging. Inotodiol inhibited the expression of mitogen-activated protein kinase (MAPK) and NADPH Oxidase 5 (NOX5). Moreover, inotodiol effectively decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), as well as nitric oxide (NO), reactive oxygen species (ROS), cyclooxygenase-2 (COX-2), and cytokines such as IL-1ß, IL-6, and TNF-α. Based on our results, inotodiol protects human dermal fibroblast by preventing MAPK-NOX5 and NF-κB activation and attenuates the expression of aging genes. Inotodiol may therefore be considered a potential candidate for developing natural antiaging products, because it protects the human skin from oxidative stress-induced skin aging by inhibiting the MAPK-NOX5 and NF-κB signaling pathways.


Assuntos
NF-kappa B , Estresse Oxidativo , Fibroblastos , Humanos , Lanosterol/análogos & derivados , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35639600

RESUMO

A Gram-stain-negative, aerobic, motile, rod-shaped novel bacterial strain, designated as MA21411-1T, was isolated from the Korean coast. The colonies were white-yellow-coloured, smooth, convex and entire, spherical and 1.0-1.8 mm in diameter. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain MA21411-1T is closely related to species of the genus Pseudophaeobacter. The 16S rRNA gene sequence similarities between strain MA21411-1T and Pseudophaeobacter arcticus DSM 23566T, Phaeobacter porticola DSM 103148T and Pseudophaeobacter leonis DSM 25627T were 98.31, 97.80 and 97.28 %, respectively. Strain MA21411-1T has a draft genome size of 4 294 042 bp, annotated with 4125 protein-coding genes, and 53 tRNA, three rRNA and one tmRNA genes. The genomic DNA G+C content was 59.2 mol%. Comparative genome analysis revealed that the average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values among strain MA21411-1T and other related species were below the cut-off levels of 95, 70 and 95.5 %, respectively. The growth temperature range for growth was 15-28 °C (optimum, 25 °C), pH range was 6.0-9.0 (optimum, pH 6.0), and salt tolerance range was 0.5-4 % (optimum 0.5 %). Ubiquinone-10 was the sole quinone present in MA21411-1T and all three closely related strains. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and four unidentified polar lipids. Based on the phylogenetic tree, as well as phenotypic, chemotaxonomic and genomic features, strain MA21411-1T represents a novel species of the genus Pseudophaeobacter, for which the name Pseudophaeobacter flagellatus sp. nov. is proposed. The type strain is MA21411-1T (=KCTC 92095T=GDMCC 1.2988T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Água
7.
Sci Rep ; 12(1): 3681, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256715

RESUMO

Povidone-iodine (PVP-I) is an antiseptic and a disinfectant with broad-spectrum antimicrobial activity against various pathogens. However, it is unclear whether PVP-I nasal instillation can suppress mucosal inflammation in non-eosinophilic chronic rhinosinusitis (CRS) mice. This study aimed to explore the anti-inflammatory effects and underlying molecular mechanism of PVP-I on lipopolysaccharide-stimulated airway epithelial cells and investigate whether nasal instillation of PVP-I can suppress mucosal inflammation in non-eosinophilic CRS mice. Inflammation-related molecules in the nasal epithelial cells and non-eosinophilic CRS mice were measured by enzyme-linked immunosorbent assay, western blotting, quantitative real-time polymerase chain reaction, immunoprecipitation, and histopathological analysis. PVP-I blocked expressions of various inflammation-related molecules, such as NLRP3, NF-κB-p65, caspase-1, and IL-1ß. Translocation of NF-κB to the nucleus, and assembly of NLRP3/ASC complexes in the nasal epithelial cells and non-eosinophilic CRS mice were also restricted. Notably, PVP-I strongly blocked the receptor co-localization of TLR4 and MyD88 in the epithelial cells of nasal mucosa. We demonstrated that PVP-I significantly attenuated inflammatory molecules and cytokines via blocking the formation of TLR4 and MyD88 complexes during LPS-induced mucosal inflammation in non-eosinophilic CRS.


Assuntos
Lipopolissacarídeos , Receptor 4 Toll-Like , Animais , Células Epiteliais/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Povidona-Iodo/farmacologia , Receptor 4 Toll-Like/metabolismo
8.
Int J Syst Evol Microbiol ; 72(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36748461

RESUMO

A Gram-stain-negative, obligately anaerobic, non-motile, non-spore-forming, helical rod-shaped bacterium, designated AGMB01872T, was isolated from faeces of a cow deposited in the National Institute of Animal Science (Wanju, Republic of Korea). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain AGMB01872T was most closely related to Succinivibrio dextrinosolvens DSM 3072T (= KCTC 25222T, 96.6 %) which belonged to the family Succinivibrionaceae. Growth was occurred at 30-40 °C (optimum, 37 °C), pH 6-7 (optimum, pH 7) and in the presence of 0.5-1.0 % (w/v) NaCl. The genomic DNA G+C content of strain AGMB01872T was 35.9 mol%. The average nucleotide identity value between strain AGMB01872T and S. dextrinosolvens DSM 3072T was 72.1 %. Cells of strain AGMB01872T utilized d-glucose, maltose, d-xylose and l-arabinose. The major fatty acids (>10 %) were C14 : 0 (23.9 %), C16 : 0 (29.4 %), summed feature 5 (10.8 %) and summed feature 10 (30.3 %). The major end-product of glucose fermentation was succinate. Based on the phenotypic, phylogenetic, biochemical, genotypic and chemotaxonomic data, AGMB01872T represents a novel species within the genus Succinivibrio, for which the name Succinivibrio feacicola sp. nov. is proposed. The type strain is AGMB01872T (= KCTC 25201T=NBRC 115007T=GDMCC 1.2573T).


Assuntos
Ácidos Graxos , Succinivibrionaceae , Animais , Bovinos , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Succinivibrionaceae/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Fezes/microbiologia , Fosfolipídeos/química
9.
Antonie Van Leeuwenhoek ; 114(11): 1867-1875, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34491487

RESUMO

A novel, strictly anaerobic, gram-negative, segmented filamentous bacterium strain AGMB03513T, was isolated from the faeces of a 5-month-old pig. Phylogenetic analysis based on the 16S rRNA gene indicated that the isolate was a member of the family Lachnospiraceae, and the closest strain was Anaerostipes butyraticus. Strain AGMB03513T formed a lineage within the genus Anaerostipes and was closely related to A. butyraticus DSM 22094 T (= KCTC 15125 T, 95.8%), Anaerostipes hadrus DSM 3319 T (= KCTC 15606 T, 95.5%), Anaerostipes caccae DSM 14662 T (= KCTC 15019 T, 94.0%), and Anaerostipes rhamnosivorans DSM 26241 T (= KCTC 15316 T, 93.4%). Strain AGMB03513T grew at temperatures between 30 and 45 °C, within a pH range of 7.0-9.0, and in medium containing up to 1.5% NaCl. Cells were found to utilise D-glucose, D-mannitol, D-lactose, D-saccharose, D-maltose, D-xylose, L-arabinose, D-mannose, and D-sorbitol, and acetate was identified as the major end product of metabolism. The major components of the cellular fatty acids were C12:0, C16:0, and C18:0. In addition, the bacterium contained meso-diaminopimelic acid in the cell wall. According to the comparative analysis of the whole genome sequence, the DNA G + C content of strain AGMB03513 was 37.0 mol%. In addition, Average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridisation (dDDH) values were obtained in comparisons of strain AGMB03513T with reference strains of species in the genus Anaerostipes. ANI values were found to be between 71.0 and 75.7%, AAI values between 66.6 and 73.2%, and dDDH values between 19.5 and 21.4%. All the data were below the threshold range for species determination. Based on phenotypic, phylogenetic, biochemical, chemotaxonomic, and genomic characteristics, we considered it reasonable to assign a novel species status to strain AGMB03513T, for which we propose the name Anaerostipes faecalis sp. nov. The type strain is AGMB03513T (= KCTC 25020 T = NBRC 114896 T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Animais , Técnicas de Tipagem Bacteriana , Clostridiales , DNA Bacteriano/genética , Ácidos Graxos/análise , Fezes , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos
10.
Artigo em Inglês | MEDLINE | ID: mdl-34590994

RESUMO

A novel bacterial isolate designated as strain AGMB01083T was isolated from Korean cow faeces deposited in the National Institute of Animal Science (Wanju, Republic of Korea). The bacterium is obligate anaerobic, Gram-strain-positive, and motile. Cells are straight or curved rod-shaped, flagella and spores are observed. Growth occurs between 20-40 °C (temperature optimum of 35 °C), at pH 7-9 (pH optimum of 7), and in the presence of 0.5-1.0 % (w/v) NaCl. Based on the 16S rRNA gene sequence analysis, the strain belongs to the genus Anaerosporobacter and is most closely related to A. mobilis HY-37-4T (=KCTC5027T, similarity, 95.7 %). The DNA G+C content is 36.2 mol%, determined by the whole-genome sequence. The average nucleotide identity value between strain AGMB01083T and strain A. mobilis HY-37-4T is 75.5 %, below the interspecies identity threshold value. The major cellular fatty acids (>10 %) of strain AGMB01083T are C16 : 0, C16 : 0 dimethyl acetal (DMA), and C16 : 0 3-OH. Based on the phylogenetic, phenotypic, biochemical, chemotaxonomic, and genomic characterization, strain AGMB01083T is proposed to be a novel species, named Anaerosporobacter faecicola, in the genus Anaerosporobacter. The type strain is AGMB01083T (=KCTC 15857T=NBRC 114517T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
11.
Artigo em Inglês | MEDLINE | ID: mdl-34542393

RESUMO

An obligately anaerobic, non-motile, Gram-negative and rod-shaped strain (AGMB03916T) was isolated from faeces of a 2-week-old piglet raised at the National Institute of Animal Science in Wanju, Republic of Korea. Growth of strain AGMB03916T occurred at 30-45 °C (optimum, 37 °C), at pH 6-9 (optimum, pH 8) and in the presence of 0.5-1.0 % (w/v) NaCl. Based on the results of 16S rRNA gene sequence analyses, strain AGMB03916T was closely related to two validly published species of the genus Phocaeicola, Phocaeicola plebeius and Phocaeicola coprocola. The 16S rRNA gene sequence similarity of strain AGMB03916T compared to P. plebeius M12T (=KCTC 5793T) and P. coprocola M16T (=KCTC 5443T) were 96.3 and 95.0 %, respectively. The genomic DNA G+C content of strain AGMB03916T was 46.4 mol%. The average nucleotide identity values between strain AGMB03916T and the reference strains were 74.9-78.5 %. Cells were able to utilize d-glucose, lactose, sucrose, maltose, salicin, aesculin hydrolysis, cellobiose and raffinose. The major end product of metabolism was acetate. The major cellular fatty acids (>10 %) of the isolate were iso-C15 : 0, anteiso-C15 : 0, C16 : 0, C16 : 0 3-OH and summed feature 11 (iso-C17 : 0 3-OH and/or C18 : 2 DMA). On the basis of the genotypic, biochemical, chemotaxonomic, phenotypic and phylogenetic data, strain AGMB03916T represents a novel species of the genus Phocaeicola, for which the name Phocaeicola faecicola sp. nov. is proposed. The type strain is AGMB03916T (=KCTC 25014T=GDMCC 1.2574T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Suínos , Vitamina K 2
12.
Curr Microbiol ; 78(10): 3667-3673, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34382101

RESUMO

A novel actinobacterial strain, Gram-positive, anaerobic, non-motile, and rod-shaped, designated KGMB02528T, was isolated from healthy human feces. Cells of strain KGMB02528T grew optimally at pH 7.0 and 37 °C and in the presence of 0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity, strain KGMB04489T belonged to the genus Collinsella and was most closely related to Collinsella aerofaciens DSM 17552T (95.8%). The DNA G + C content was 58.0 mol%. The major cellular fatty acids (> 10%) were C16:0 DMA, C16:0 ALDE, C14:0 DMA, and C12:0. The predominant end product of fermentation was acetic acid. The cell wall peptidoglycan of strain KGMB02528T contained alanine, glutamic acid, and lysine, while diaminopimelic acid was not detected. The polar lipids were composed of two unidentified phospholipids and unidentified nine glycolipids. Based on the phenotypic, chemotaxonomic, and phylogenetic properties, strain KGMB02528T represents a novel species of the genus Collinsella, for which the name Collinsella acetigenes sp. nov. is proposed. The type strain is Collinsella acetigenes KGMB02528T (= KCTC 15847T = CCUG 73987T). The description of the genus Collinsella is emended to accommodate the new species.The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Collinsella acetigenes KGMB02528T is MT117838. The whole-genome shotgun BioProject number is PRJNA623694 with the accession number JABBCP000000000.


Assuntos
Ácidos Graxos , Fosfolipídeos , Actinobacteria , Anaerobiose , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Fezes , Humanos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Am J Rhinol Allergy ; 35(6): 817-829, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33736454

RESUMO

BACKGROUND: Exposure to airborne urban particulate matter (UPM) has been closely related to the development and aggravation of respiratory disease, including sinonasal disorders. OBJECTIVE: The aims of this study were to investigate the effect of UPM on nasal epithelial tight junctions (TJs) and mucosal barrier function and delineate the underlying mechanism by using both in vitro and in vivo models. METHODS: In this study, human nasal epithelial cells (hNECs) and BALB/c mice were exposed to UPMs. UPM 1648a and 1649 b were employed. TJ and endoplasmic reticulum (ER) stress marker expression was measured using western blot analysis and immunofluorescence. TJ integrity and nasal epithelial barrier function were evaluated by transepithelial electric resistance (TER) and paracellular flux. In addition, the effects of N-acetyl-L-cysteine (NAC) on UPM-induced nasal epithelial cells were investigated. RESULTS: UPM significantly impaired the nasal epithelial barrier, as demonstrated by decreased protein expression of TJ and ER stress markers in human nasal epithelial cells. This finding was in parallel to reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability. Pretreatment with NAC decreased the degree of UPM-mediated ER stress and restored nasal epithelial barrier disruption in human nasal epithelial cells (hNEC) and the nasal mucosa of experimental animals. CONCLUSION: These data suggest that UPMs may induce nasal epithelial barrier dysfunction by targeting TJs and ER stress could be related in this process. Based on these results, we suggest that suppression of this process with an inhibitor targeting ER stress responses could represent a novel promising therapeutic target in UPM-induced sinonasal disease.


Assuntos
Material Particulado , Junções Íntimas , Animais , Estresse do Retículo Endoplasmático , Células Epiteliais , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/toxicidade
14.
Bioconjug Chem ; 31(11): 2607-2617, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33108158

RESUMO

Dual-modular imaging approaches combining near-infrared (NIR) fluorescence (FLI) and photoacoustic imaging (PAI) require suitable contrast agents to produce dual-modular signals. Although nanoparticles have been used to develop PAI agents, small molecule-based imaging agents have not been extensively studied, highlighting the need to design new fluorophores with an enhanced multifunctional ability. Thus, in this study, we designed a novel squaraine (SQ)-based dye and reported its rational preparation and conjugation with a cancer targeting peptide. Specifically, benzoindole-derived SQ (BSQ) showed strong absorption and fluorescence properties at above 650 nm under aqueous conditions, with a maximum absorption and emission at 665 and 680 nm, respectively. Moreover, PA signal scanning experiments revealed a maximum signal intensity in the range 680-700 nm. BSQ was also conjugated with cyclic arginine-glycine-aspartic acid (cRGD) to improve its active targeting ability for the αvß3 integrin, which is overexpressed in various cancer and angiogenic cells. A series of in vitro, in vivo, and ex vivo FLI studies showed that the cRGD conjugated BSQ (BSQ-RGD2) successfully stained and targeted αvß3 integrin-overexpressing tumor cells and xenografts, which were clearly visualized by FLI and PAI. Therefore, BSQ-RGD2 can successfully be applied to dual-modular imaging of the specific biomarker in living animals.


Assuntos
Ciclobutanos/química , Sondas Moleculares/química , Imagem Óptica/métodos , Fenóis/química , Técnicas Fotoacústicas/métodos , Animais , Xenoenxertos , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Peptídeos Cíclicos/química , Solubilidade , Espectroscopia de Luz Próxima ao Infravermelho/métodos
15.
Int Forum Allergy Rhinol ; 10(7): 884-892, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32479710

RESUMO

BACKGROUND: Povidone-iodine (PVP-I) is well known as an antiseptic and exhibits extensive activity against various pathogens. However, due to its uniquely unpleasant nature, it cannot be used locally to deactivate various sinonasal pathogens. Therefore, we developed a PVP-I composite that blocks the unpleasant odor of PVP-I for use as a local antiseptic in the sinonasal cavity and evaluated its effect on bacterial biofilm's formation and elimination in in vivo and in vitro models. METHODS: MTT, lactate dehydrogenase, and live/dead staining assay were performed to examine the cellular toxicity of PVP-I composites on the primary human nasal epithelial and RPMI 2650 cells. Crystal violet assay was performed to quantify bacterial biofilm after treating with various agents, including PVP-I and antibiotics. Hematoxylin-and-eosin staining, live/dead staining assay, and scanning electron microscopy were conducted to evaluate the effect of PVP-I on biofilm formation in a mice biofilm model. RESULTS: It was observed that the PVP-I composite did not have any significant toxic effect on the nasal epithelial cells. Furthermore, the PVP-I composite effectively inhibited the formation of bacterial biomass within a dose-dependent manner after 48 hours of incubation with Pseudomonas aeruginosa and Staphylococcus aureus. In mice, it effectively eliminated biofilm from the mucosa of the nasal cavity and maxillary sinus at the tested concentrations. CONCLUSION: The results of this study indicate that the PVP-I composite is a promising compound that could be used locally to prevent the formation of biofilms and to eliminate them from the sinonasal cavity.


Assuntos
Anti-Infecciosos Locais , Infecções Estafilocócicas , Animais , Biofilmes , Camundongos , Povidona-Iodo , Staphylococcus aureus
16.
Int J Syst Evol Microbiol ; 70(3): 2059-2065, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32100703

RESUMO

An obligately anaerobic, Gram-stain-positive, non-motile and coccoid- or oval-shaped bacterium, designated strain KGMB01111T, was isolated from faeces from a healthy Korean. Comparative analysis of 16S rRNA gene sequences indicated that KGMB01111T was closely related to Ruminococcus gauveauii CCRI-16110T (93.9 %) and Blautia stercoris GAM6-1T (93.7 %), followed by Clostridium nexile DSM 1787T (93.5 %), Blautia producta ATCC 27340T (93.4 %), Blautia hydrogenotrophica DSM 10507T (93.1 %) and Blautia coccoides ATCC 29236T (93.1 %) within the family Lachnospiraceae (Clostridium rRNA cluster XIVa). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that KGMB01111T formed a separate branch with species in the genus Blautia. The major cellular fatty acids (>10.0 %) were C16 : 0 and C18 : 1 cis 9 dimethyl acetal (DMA), and the major polar lipids were aminophospholipids and lipids. KGMB01111T contained meso-diaminopimelic acid in cell-wall peptidoglycan. The predominant end product of fermentation produced by KGMB01111T was acetic acid. Based on the whole-genome sequence, the DNA G+C content of the isolate was 44.7 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, KGMB01111T represents a novel species within the genus Blautia for which the name Blautia faecicola sp. nov. is proposed. The type strain is KGMB01111T (=KCTC 15706T=DSM 107827T).


Assuntos
Clostridiales/classificação , Fezes/microbiologia , Filogenia , Ácido Acético/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fermentação , Humanos , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
17.
J Microbiol ; 58(2): 99-104, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31993985

RESUMO

An obligately anaerobic, Gram-stain-negative, non-motile, non-spore-forming, and coccobacilli-shaped bacterial strain, designated KGMB03119T, was isolated from human faeces from a Korean. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate was a member of the genus Sutterella and most closely related to Sutterlla wadsworthensis KCTC 15691T (96.8% 16S rRNA gene sequence similarity). The DNA G + C content of strain KGMB03119T was 58.3 mol% as determined from its whole genome sequence. Strain KGMB03119T was asaccharolytic, catalase-positive, oxidase- and urease-negative. Furthermore, the isolate was positive for alkaline phosphatase, leucine arylamidase, acid phosphatase, arginine arylamidase, alanine arylamidase, and glycine arylamidase. The major cellular fatty acids (> 10%) of the isolate were C18:1ω9c and C16:0. Methylmenaquinone-5 (MMK-5, 100%) was the predominant isoprenoid quinone in the isolate. Based on the phylogenetic, physiological, and chemotaxonomic characteristics, strain KGMB03119T represents a novel species, for which the name Sutterella faecalis sp. nov. is proposed. The type strain is KGMB03119T (= KCTC 15823T = NBRC 114254T).


Assuntos
Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Fezes/microbiologia , Alcaligenaceae/genética , Alcaligenaceae/metabolismo , Classificação , DNA Bacteriano/genética , Microbioma Gastrointestinal , Humanos , Filogenia , RNA Ribossômico 16S/genética
18.
Int J Syst Evol Microbiol ; 70(3): 1684-1690, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31913113

RESUMO

A novel actinobacterial strain, designated KGMB04484T, was isolated from healthy human faeces sampled in the Republic of Korea. Cells of strain KGMB04484T were strictly anaerobic, Gram-stain-positive, catalase-positive, oxidase-negative, non-motile coccobacilli and formed tiny colonies on Columbia agar with 5 % horse blood. On the basis of 16S rRNA gene sequence similarity, strain KGMB04484T was affiliated with the genus Senegalimassilia in the family Coriobacteriaceae and its closest relative was Senegalimassilia anaerobia JC110T (96.28 % sequence similarity). The DNA G+C content of strain KGMB04484T was 61.2 mol%. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and three unidentified glycolipids. The predominant cellular fatty acids (>10 %) of strain KGMB04484T were C14 : 0, C16 : 0 and C16 : 0 dimethyl acetal. Based on its phylogenetic, physiological and chemotaxonomic characteristics, strain KGMB04484T is considered to represent a novel species within the genus Senegalimassilia, for which the name Senegalimassilia faecalis sp. nov. is proposed. The type strain is KGMB04484T (=KCTC 15721T=CCUG 72347T).


Assuntos
Actinobacteria/classificação , Fezes/microbiologia , Filogenia , Actinobacteria/isolamento & purificação , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Humanos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
19.
J Microbiol ; 57(12): 1073-1078, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31680219

RESUMO

A strictly anaerobic bacterium, designated as strain KGMB-03357T, was isolated from the faeces of a healthy Korean selected by Bundang Seoul National University based on health status. Cells of strain KGMB03357T are Gram-stain-positive, non-motile, non-spore-forming, and observed as straight or curved rods. The isolate grew at 10-45°C (optimum temperature of 40°C) and a pH range of 5.1-10.5 (optimum pH of 6.8). Analysis of phylogenetic trees based on the 16S rRNA gene sequences revealed that strain KGMB03357T forms a lineage within the genus Anaerotignum, and is most closely related to Anaerotignum lactatifermentans G17T (= KCTC 15066T, 96.1%), Anaerotignum propionicum DSM 1682T (= KCTC 5582T, 94.9%), Anaerotignum neopropionicum DSM 03847T (= KCTC 15564T, 94.9%), and Anaerotignum aminivorans SH021T (= KCTC 15705T, 94.8%). The ANI values between strain KGMB 03357T and members of the genus Anaerotignum were 73.3-71.0%, which are below the ANI criterion for interspecies identity. The DNA G + C content based on the whole-genome sequence is 47.3 mol%. The major cellular fatty acids of strain KGMB03357T are C16:0, C18:0, C18∶1 cis 9, and anteiso-C15∶0. Strain KGMB03357T contains meso-diaminopimelic acid as the diagnostic amino acid in the cell wall peptidoglycan. Based on the phenotypic, phylogenetic, and genomic properties, strain KGMB 03357T represents a novel species of the genus Anaerotignum, for which the name Anaerotignum faecicola sp. nov. is proposed. The type strain is KGMB03357T (= KCTC 15736T = DSM 107953T).


Assuntos
Clostridiales/classificação , Clostridiales/isolamento & purificação , Fezes/microbiologia , Microbiota , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/fisiologia , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Humanos , Concentração de Íons de Hidrogênio , Peptidoglicano/análise , RNA Ribossômico 16S/genética , Seul , Análise de Sequência de DNA , Temperatura
20.
Int J Syst Evol Microbiol ; 69(12): 3824-3829, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31511127

RESUMO

A novel Gram-stain-negative and strictly anaerobic bacterial strain, designated KGMB02408T, was isolated from faeces of a healthy human in the Republic of Korea. The isolate was characterized as non-motile, non-spore-forming and rod-shaped (variable in length). The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KGMB02408T belonged to the genus Bacteroides and was most closely related to Bacteroides faecichinchillae JCM 17102T (=KCTC 15666T; 96.5 %). Based on its whole-genome sequence, the DNA G+C content of the isolate was 39.5 mol%. The average nucleotide identity value between strain KGMB02408T and related species, B. faecichinchillae JCM 17102T, was 93.8 %. The major cellular fatty acids (>10 %) of the isolate were anteiso-C15 : 0, iso-C17 : 0-OH, summed feature 11 (iso-C17 : 0-OH and/or C18 : 2 DMA) and C16 : 0. Menaquinone-8 (28.6 %) and menaquinone-10 (47.1 %) were detected as the major respiratory quinones in the isolate. The major end products of glucose fermentation produced by strain KGMB02408T were lactic acid, acetic acid and formic acid. Based on its phylogenetic, phenotypic and chemotaxonomic characteristics, strain KGMB02408T represents a novel species of the genus Bacteroides in the family Bacteroidaceae. The type strain is KGMB02408T (=KCTC 15687T=DSM 107828T).


Assuntos
Bacteroides/classificação , Fezes/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Bacteroides/isolamento & purificação , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Humanos , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...