Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(36): 47551-47562, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39163587

RESUMO

All-solid-state lithium batteries, including sulfide electrolytes and nickel-rich layered oxide cathode materials, promise safer electrochemical energy storage with high gravimetric and volumetric densities. However, the poor electrical conductivity of the active material results in the requirement for additional conducive additives, which tend to react negatively with the sulfide electrolyte. The fundamental scientific principle uncovered through this work is simple and suggests that the electrical network benefits associated with the introduction of short-length carbons will eventually be overpowered by the increase in bulk resistance associated with their instability in the sulfide electrolyte. However, applying just the right amount of short carbon fibres minimizes degradation of the sulfide solid electrolyte and maximizes the electron movement. Therefore, we propose the application of a low-weight-percent carbon nanotubes (CNTs) coating on the nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 (NCM811) along with large-aspect-ratio carbon nanofibers (CNFs) as the primary conductive additive. When only 0.3 wt % CNTs was utilized with 4.7 wt % CNFs, an initial Coulombic efficiency of 83.55% at 0.05C and a notably excellent capacity retention of 90.1% over 50 cycles at 0.5C were achieved along with a low ionic resistance. This work helps to confirm the validity of applying short carbon pathways in sulfide-electrolyte-based cathode composites and proposes their combination with a larger primary carbon additive as a solution to the ongoing all-solid-state battery rate and instability issues.

2.
Nanomaterials (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063760

RESUMO

Sulfide electrolyte all-solid-state lithium-ion batteries (ASSLBs) that have inherently nonflammable properties have improved greatly over the past decade. However, determining both the stable and functional electrode components to pair with these solid electrolytes requires significant investigation. Solid electrolyte comprises 20-40% of the composite cathode electrode, which improves the ionic conductivity. However, this results in thick electrolyte that blocks the electron pathways in the electrode, significantly lowering the electrochemical performance. The application of conductive carbon material is required to overcome this issue, and, hence, determining the carbon properties that result in the most stable performance in the sulfide solid electrolyte is vital. This study analyzes the effect of the cathode conductive additive's morphology on the electrochemical performance of sulfide electrolyte-based ASSLBs. Carbon black (CB) and carbon nanotubes (CNTs), which provide electron pathways at the nanoscale and sub-micron scale, and carbon nanofiber (CNF), which provides electron pathways at the tens-of-microns scale, are all tested individually as potential conductive additives. When the CNF, with its high crystallinity, is used as a conductive material, the electrochemical performance shows an excellent initial discharge capacity of 191.78 mAh/g and a 50-cycle capacity retention of 83.9%. Conversely, the CB and the CNTs, with their shorter pathways and significantly increased surface area, show a relatively low electrochemical performance. By using the CNF to provide excellent electrical conductivity to the electrode, the polarization is suppressed. Furthermore, the interfacial impedance across the charge transfer region is also reduced over 50 cycles compared with the CB and CNT composite cells. These findings stringently analyze and emphasize the importance of the morphology of the carbon conductive additives in the ASSLB cathode electrodes, with improvements in the electrochemical performance being realized through the application of long-form two-dimensional crystalline CNFs.

3.
Small ; 19(25): e2206576, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929096

RESUMO

The mainstream of high-energy cathode development is focused on increasing the Ni-ratio in layered structured cathode materials. The increment of the Ni portion in the layered cathode material escalates not only the deliverable capacity but also the structural degradation. High-Ni layered cathodes are highly vulnerable to exposure to air that contains CO2 and H2 O, forming problematic residual lithium compounds at the surface. In this work, a novel air- and moisture robust surface modification is reported for LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) via the sol-gel coating method that selectively coats the internal surface area of the polycrystalline morphology secondary particles. Bare-, Li2 SnO3 -coated and LiCoO2 -coated NCM811 are exposed to different ambient environments (air, hot-air, and moisture-air) to systematically investigate the correlation between the internal/external coating morphology and performance degradations. The LiCoO2 -coated NCM811s exhibit high-capacity retention after exposure to all environments, due to the internal surface coating that prevents the penetration of harmful compounds into the polycrystalline NCM811. On the other hand, the Li2 SnO3 -coated NCM811s exposed to the ambient environments show gradual capacity fading, implying the occurrence of internal degradation. This paper highlights the impact of the internal degradation of polycrystalline NCM811 after environmental exposure and the correct coating mechanisms required to successfully prevent it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA