Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Blood Cancer ; 62(4): 581-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25630799

RESUMO

BACKGROUND: Under normoxic conditions, cancer cells use aerobic glycolysis as opposed to glucose oxidation for energy production; this altered metabolism correlates with poor outcomes in neuroblastoma. Hypoxia-inducible factor-1 alpha (HIF-1α) and pyruvate dehydrogenase kinase 4 (PDK4) regulate aerobic glycolysis, while pyruvate dehydrogenase phosphatase 2 (PDP2) promotes glucose oxidation. Here, we sought to determine whether gastrin-releasing peptide receptor (GRP-R) signaling regulates glucose metabolism. PROCEDURE: Neuroblastoma cell lines, BE(2)-C and SK-N-AS, were used. PCR microararay for glucose metabolism was performed on GRP-R silenced cells. Target protein expression was validated using Western blotting and VEGF ELISA. Cobalt chloride (CoCl2 ) was used to induce chemical hypoxia. Efficacy of targeting PDK regulation in neuroblastoma was assessed using dichloroacetate (DCA) by conducting cell viability assays and Western blotting for apoptotic markers. RESULTS: Silencing GRP-R decreased HIF-1α expression and blocked VEGF expression and secretion in both normoxic and CoCl2 induced hypoxia. PCR array analysis identified that GRP-R silencing reduced PDK4 and increased PDP2 mRNA expression. These findings were validated by Western blotting. CoCl2 induced hypoxia increased VEGF secretion, HIF-1α, and PDK4 expression. PDK4 silencing decreased HIF-1α expression and VEGF expression and secretion. DCA treatment decreased BE(2)-C and SK-N-AS proliferation while promoting cell death. GRP-R silencing and DCA treatment synergistically halted BE(2)-C proliferation. CONCLUSIONS: We report that GRP-R regulates glucose metabolism in neuroblastoma by modulating HIF-1α, PDK4 and PDP2. PDK4 regulates glucose metabolism, in part, via regulation of HIF-1α. Synergistic consequences of GRP-R inhibition and DCA treatment may suggest a novel therapeutic strategy for the treatment of aggressive neuroblastoma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glicólise , Proteínas de Neoplasias/biossíntese , Neuroblastoma/metabolismo , Receptores da Bombesina/biossíntese , Antimutagênicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Cobalto/farmacologia , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Neoplasias/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Receptores da Bombesina/genética , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
2.
Acta Neuropathol ; 123(4): 587-600, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22407012

RESUMO

Sonic hedgehog (Shh) signaling is critical during development and its aberration is common across the spectrum of human malignancies. In the cerebellum, excessive activity of the Shh signaling pathway is associated with the devastating pediatric brain tumor medulloblastoma. We previously demonstrated that exaggerated de novo lipid synthesis is a hallmark of Shh-driven medulloblastoma and that hedgehog signaling inactivates the Rb/E2F tumor suppressor complex to promote lipogenesis. Indeed, such Shh-mediated metabolic reprogramming fuels tumor progression, in an E2F1- and FASN-dependent manner. Here, we show that the nutrient sensor PPARγ is a key component of the Shh metabolic network, particularly its regulation of glycolysis. Our data show that in primary cerebellar granule neural precursors (CGNPs), proposed medulloblastoma cells-of-origin, Shh stimulation elicits a marked induction of PPARγ alongside major glycolytic markers. This is also documented in the actively proliferating Shh-responsive CGNPs in the developing cerebellum, and PPARγ expression is strikingly elevated in Shh-driven medulloblastoma in vivo. Importantly, pharmacological blockade of PPARγ and/or Rb inactivation inhibits CGNP proliferation, drives medulloblastoma cell death and extends survival of medulloblastoma-bearing animals in vivo. This coupling of mitogenic Shh signaling to a major nutrient sensor and metabolic transcriptional regulator define a novel mechanism through which Shh signaling engages the nutrient sensing machinery in brain cancer, controls the cell cycle, and regulates the glycolytic index. This also reveals a dominant role of Shh in the etiology of glucose metabolism in medulloblastoma and underscores the function of the Shh â†’ E2F1 â†’ PPARγ axis in altering substrate utilization patterns in brain cancers in favor of tumor growth. These findings emphasize the value of PPARγ downstream of Shh as a global therapeutic target in hedgehog-dependent and/or Rb-inactivated tumors.


Assuntos
Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Células-Tronco Neurais/metabolismo , PPAR gama/metabolismo , Anilidas/farmacologia , Animais , Animais Recém-Nascidos , Compostos Azo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Transporte/metabolismo , Proliferação de Células , Células Cultivadas , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição E2F1/genética , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Hexoquinase/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/genética , Tomografia por Emissão de Pósitrons , Hormônios Tireóideos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transdução Genética/métodos , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA