Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38672714

RESUMO

Tumor-associated macrophages (TAMs) play a pivotal role in the tumor microenvironment, influencing cancer progression and contributing to poor prognosis. However, in cervical cancer (CC), their significance and involvement are relatively less studied than in other gynecological cancers such as ovarian and endometrial cancer. This review aims to provide an overview of TAMs, covering their origins and phenotypes and their impact on CC progression, along with major TAM-targeted therapeutic approaches. Furthermore, we advocate for the integration of cutting-edge research methodologies, such as single-cell RNA sequencing and spatial RNA sequencing, to enable in-depth and comprehensive investigations into TAMs in CC, which would be beneficial in leading to more personalized and effective immunotherapy strategies for patients with CC.

2.
Biosci Microbiota Food Health ; 43(1): 73-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188664

RESUMO

The reasons for sex-associated gut microbiota differences have not been determined, and although sex hormones, diet, and other factors are considered to contribute to them, many of these factors are age related. To shed light on this complex interplay, our study aimed to investigate and compare the gut microbial compositions of males and females across a broad range of ages, aiming to identify sex-associated disparities and potential causal factors. Our study encompassed a comprehensive analysis of gut microbiota data obtained from 444 Japanese individuals, ranging from newborns to centenarians, sourced from the DNA Data Bank of Japan. We categorized the subjects into 13 distinct age groups and examined their relative microbial abundances, as well as alpha and beta diversities, in relation to sex and age. No difference was observed between gut microbiota relative abundances or alpha diversities between men and women at any age. However, the study showed that the heterogeneity of gut microbiota among women in their 20s was greater than in men. To confirm the general occurrence of this difference, we conducted additional analyses using seven datasets: three from Japan and four from other countries. Interestingly, this variance was particularly noticeable within Japanese women. We also showed a potential link between the observed heterogeneity and dietary fiber intake. It is hoped this study will provide clues that aid in the identification of factors responsible for sex-associated differences in gut microbiota compositions.

3.
mBio ; 15(2): e0327523, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193728

RESUMO

The casein kinase 2 (CK2) complex has garnered extensive attention over the past decades as a potential therapeutic target for diverse human diseases, including cancer, diabetes, and obesity, due to its pivotal roles in eukaryotic growth, differentiation, and metabolic homeostasis. While CK2 is also considered a promising antifungal target, its role in fungal pathogens remains unexplored. In this study, we investigated the functions and regulatory mechanisms of the CK2 complex in Cryptococcus neoformans, a major cause of fungal meningitis. The cryptococcal CK2 complex consists of a single catalytic subunit, Cka1, and two regulatory subunits, Ckb1 and Ckb2. Our findings show that Cka1 plays a primary role as a protein kinase, while Ckb1 and Ckb2 have major and minor regulatory functions, respectively, in growth, cell cycle control, morphogenesis, stress response, antifungal drug resistance, and virulence factor production. Interestingly, triple mutants lacking all three subunits (cka1Δ ckb1Δ ckb2Δ) exhibited more severe phenotypic defects than the cka1Δ mutant alone, suggesting that Ckb1/2 may have Cka1-independent functions. In a murine model of systemic cryptococcosis, cka1Δ and cka1Δ ckb1Δ ckb2Δ mutants showed severely reduced virulence. Transcriptomic, proteomic, and phosphoproteomic analyses further revealed that the CK2 complex controls a wide array of effector proteins involved in transcriptional regulation, cell cycle control, nutrient metabolisms, and stress responses. Most notably, CK2 disruption led to dysregulation of key signaling cascades central to C. neoformans pathogenicity, including the Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin signaling pathways. In summary, our study provides novel insights into the multifaceted roles of the fungal CK2 complex and presents a compelling case for targeting it in the development of new antifungal drugs.IMPORTANCEThe casein kinase 2 (CK2) complex, crucial for eukaryotic growth, differentiation, and metabolic regulation, presents a promising therapeutic target for various human diseases, including cancer, diabetes, and obesity. Its potential as an antifungal target is further highlighted in this study, which explores CK2's functions in C. neoformans, a key fungal meningitis pathogen. The CK2 complex in C. neoformans, comprising the Cka1 catalytic subunit and Ckb1/2 regulatory subunits, is integral to processes like growth, cell cycle, morphogenesis, stress response, drug resistance, and virulence. Our findings of CK2's role in regulating critical signaling pathways, including Hog1, Mpk1 MAPKs, cAMP/PKA, and calcium/calcineurin, underscore its importance in C. neoformans pathogenicity. This study provides valuable insights into the fungal CK2 complex, reinforcing its potential as a target for novel antifungal drug development and pointing out a promising direction for creating new antifungal agents.


Assuntos
Criptococose , Cryptococcus neoformans , Diabetes Mellitus , Meningite Fúngica , Neoplasias , Animais , Camundongos , Humanos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Cryptococcus neoformans/metabolismo , Antifúngicos/metabolismo , Cálcio/metabolismo , Calcineurina/metabolismo , Proteômica , Transdução de Sinais , Criptococose/microbiologia , Obesidade
4.
mSphere ; 9(1): e0055723, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38085018

RESUMO

The N6-threonylcarbamoyl adenosine (t6A) tRNA modification is critical for ensuring translation fidelity across three domains of life. Our prior work highlighted the KEOPS complex, organized in a Pcc1-Kae1-Bud32-Cgi121 linear arrangement, not only serves an evolutionarily conserved role in t6A tRNA modification but also exerts diverse functional impacts on pathobiological characteristics in Cryptococcus neoformans, a leading cause of fungal meningitis worldwide. However, the extent to which the pleiotropic functions of the KEOPS complex are specifically tied to tRNA modification remains uncertain. To address this, we undertook a functional characterization of Sua5, responsible for generating the precursor threonylcarbamoyl-adenylate (TC-AMP) for t6A tRNA modification, using a reverse genetics approach. Comparative phenotypic analyses with KEOPS mutants revealed that Sua5 plays a vital role in multiple cellular processes, such as t6A tRNA modification, growth, sexual development, stress response, and virulence factor production, thus reflecting the multifaceted functions of the KEOPS complex. In support of this, sua5Δ bud32Δ double mutants showed phenotypes comparable to those of the corresponding single mutants. Intriguingly, a SUA5 allele lacking a mitochondria targeting sequence (SUA5MTSΔ) was sufficient to restore the wild-type phenotypes in the sua5Δ mutant, suggesting that Sua5's primary functional locus may be cytosolic, akin to the KEOPS complex. Further supporting this, the deletion of Qri7, a mitochondrial paralog of Kae1, had no discernible phenotypic impact on C. neoformans. We concluded that cytosolic t6A tRNA modifications, orchestrated by Sua5 and the KEOPS complex, are central to the regulation of diverse pathobiological functions in C. neoformans.IMPORTANCEUnderstanding cellular functions at the molecular level is crucial for advancing disease treatments. Our research reveals a critical connection between the KEOPS complex and Sua5 in Cryptococcus neoformans, a significant cause of fungal meningitis. While the KEOPS complex is known for its versatile roles in cellular processes, Sua5 is specialized in t6A tRNA modification. Our key finding is that the diverse roles of the KEOPS complex, ranging from cell growth and stress response to virulence, are fundamentally linked to its function in t6A tRNA modification. This conclusion is supported by the remarkable similarities between the impacts of Sua5 and KEOPS on these processes, despite their roles in different steps of the t6A modification pathway. This newfound understanding deepens our insight into fungal biology and opens new avenues for developing potential therapies against dangerous fungal diseases.


Assuntos
Cryptococcus neoformans , Meningite Fúngica , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Adenosina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
5.
Life (Basel) ; 13(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38137942

RESUMO

Lymphovascular space invasion (LVSI) is the presence of tumor emboli in the endothelial-lined space at the tumor body's invasive edge. LVSI is one of three Sedlis criteria components-a prognostic tool for early cervical cancer (CC)-essential for indicating poor prognosis, such as lymph node metastasis, distant metastasis, or shorter survival rate. Despite its clinical significance, an in-depth comprehension of the molecular mechanisms or immune dynamics underlying LVSI in CC remains elusive. Therefore, this study investigated tumor-immune microenvironment (TIME) dynamics of the LVSI-positive group in CC. RNA sequencing included formalin-fixed paraffin-embedded (FFPE) slides from 21 CC patients, and differentially expressed genes (DEGs) were analyzed. Functional analysis and immune deconvolution revealed aberrantly enriched PI3K/Akt pathway activation and a heterogenic immune composition with a low abundance of regulatory T cells (Treg) between LVSI-positive and LVSI-absent groups. These findings improve the comprehension of LSVI TIME and immune mechanisms, benefiting targeted LVSI therapy for CC.

6.
Indian J Med Microbiol ; 46: 100426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37945119

RESUMO

PURPOSE: Group B Streptococcus (GBS) colonization and vaginal microbiome (VMB) dysbiosis are associated with adverse perinatal outcomes. However, the role of GBS colonization in maternal VMB remains unclear. Herein, we aimed to investigate this relationship and identify additional pathogens associated with GBS colonization for potential implications in understanding their clinical significance. MATERIALS AND METHODS: Vaginal swab samples were obtained before delivery from nine women with normal pregnancies for GBS detection and 16S rRNA gene sequencing. The diversity analysis and community state types clustering were used to compare the GBS-positive vs. GBS-negative groups. ANCOM-BC was implemented to identify differentially abundant microbes (DAMs) associated with GBS colonization. The correlation and receiver operating characteristic analysis were used to evaluate the relationship between DMAs and clinical parameters. RESULTS: There were 6/9 (66,7%) GBS-negative pregnant women. The α-diversity index (p â€‹= â€‹0.71 for observed operational taxonomic units and p â€‹= â€‹0.90 for Shannon diversity), ß-diversity index (p â€‹= â€‹0.583), and community state types clustering (p â€‹= â€‹0.23) were not significantly different between the GBS-positive and -negative groups. Four DAMs, namely, Actinomyces, Shigella, Fenollaria, and Gemella, were significantly associated with GBS colonization, reflecting the dynamicity of the gestational VMB. Their abundances were negatively correlated with birth weight and had acceptable discriminating ability in premature membrane rupture (area under the curve, 0.9). CONCLUSIONS: Despite the absence of significant effects on overall VMB composition, our preliminary results investigated that maternal GBS colonization related to high abundance of four pathogens with potential clinical utility as microbial signatures.


Assuntos
Microbiota , Complicações Infecciosas na Gravidez , Infecções Estreptocócicas , Gravidez , Feminino , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética , Streptococcus agalactiae/genética
7.
PLoS Pathog ; 19(10): e1011721, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37812645

RESUMO

V-ATPase, which comprises 13-14 subunits, is essential for pH homeostasis in all eukaryotes, but its proper function requires a regulator to assemble its subunits. While RAVE (regulator of H+-ATPase of vacuolar and endosomal membranes) and Raboconnectin-3 complexes assemble V-ATPase subunits in Saccharomyces cerevisiae and humans, respectively, the function of the RAVE complex in fungal pathogens remains largely unknown. In this study, we identified two RAVE complex components, Rav1 and Wdr1, in the fungal meningitis pathogen Cryptococcus neoformans, and analyzed their roles. Rav1 and Wdr1 are orthologous to yeast RAVE and human Rabconnectin-3 counterparts, respectively, forming the hybrid RAVE (hRAVE) complex. Deletion of RAV1 caused severe defects in growth, cell cycle control, morphogenesis, sexual development, stress responses, and virulence factor production, while the deletion of WDR1 resulted in similar but modest changes, suggesting that Rav1 and Wdr1 play central and accessary roles, respectively. Proteomics analysis confirmed that Wdr1 was one of the Rav1-interacting proteins. Although the hRAVE complex generally has V-ATPase-dependent functions, it also has some V-ATPase-independent roles, suggesting a unique role beyond conventional intracellular pH regulation in C. neoformans. The hRAVE complex played a critical role in the pathogenicity of C. neoformans, and RAV1 deletion attenuated virulence and impaired blood-brain barrier crossing ability. This study provides comprehensive insights into the pathobiological roles of the fungal RAVE complex and suggests a novel therapeutic strategy for controlling cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
Microorganisms ; 11(6)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37374919

RESUMO

Uterine cervical cancer (CC) is a complex, multistep disease primarily linked to persistent infection with high-risk human papillomavirus (HR-HPV). However, it is widely acknowledged that HR-HPV infection alone cannot account for the formation and progression of CC. Emerging evidence suggests that the cervicovaginal microbiome (CVM) also plays a significant role in HPV-related CC. Certain bacteria, such as Fusobacterium spp., Porphyromonas, Prevotella, and Campylobacter, are currently being considered as potential microbiomarkers for HPV-positive CC. However, the composition of the CVM in CC is inconsistent; thus, further studies are needed. This review comprehensively discusses the complex interplay between HPV and the CVM in cervical carcinogenesis. It is postulated that the dynamic interaction between HPV and the CVM creates an imbalanced cervicovaginal microenvironment that triggers dysbiosis, enhances HPV persistence, and promotes cervical carcinogenesis. Moreover, this review aims to provide updated evidence on the potential role of bacteriotherapy, particularly probiotics, in the treatment of CC.

9.
Microbiol Spectr ; 11(3): e0068523, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036370

RESUMO

Blocking of nutrient uptake and amino acid biosynthesis are considered potential targets for next-generation antifungal drugs against pathogenic fungi, including Cryptococcus neoformans. In this regard, the sulfate assimilation pathway is particularly attractive, as it is only present in eukaryotes such as plants and fungi, yet not in mammals. Here, we demonstrated that the adenylyl sulfate kinase (Met14) in the sulfate assimilation pathway is not essential yet is required for the viability of C. neoformans due to its involvement in biosynthesis of two sulfur-containing amino acids, cysteine and methionine. Met14-dependent cysteine and methionine biosynthesis was found to significantly contribute to a diverse range of pathobiological processes in C. neoformans. Met14-dependent cysteine rather than methionine biosynthesis was also found to play pivotal roles in cell growth and tolerance to environmental stresses and antifungal drugs. In contrast, the Met14-dependent methionine biosynthesis was found to be more important than cysteine biosynthesis for the production of major cryptococcal virulence factors of melanin pigments and polysaccharide capsules. Finally, we also found that despite its attenuated virulence in an insect model, Galleria mellonella, the met14Δ mutant yielded no difference in virulence in a murine model of systemic cryptococcosis. Hence, clinical inhibition of Met14-dependent amino acid biosynthetic pathways may not be advantageous for the treatment of systemic cryptococcosis. IMPORTANCE Current antifungal drugs have several limitations, such as drug resistance, severe side effects, and a narrow spectrum. Therefore, novel antifungal targets are urgently needed. To this end, fungal sulfur amino acid biosynthetic pathways are considered potential targets for development of new antifungal agents. Here, we demonstrated that Met14 in the sulfate assimilation pathway promotes growth, stress response, and virulence factor production in C. neoformans via synthesis of sulfur-containing amino acids methionine and cysteine. Met14-dependent cysteine rather than methionine synthesis was found to be critical for growth and stress responses, whereas Met14-dependent methionine synthesis was more important for the production of antiphagocytic capsules and antioxidant melanin in C. neoformans. Surprisingly, deletion of the MET14 gene was found to attenuate cryptococcal virulence in an insect model, yet not in a murine model. Collectively, our results showed that Met14-dependent cysteine and methionine biosynthesis play roles that are distinct from each other in C. neoformans. Moreover, Met14 is unlikely to be a suitable anticryptococcal drug target.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Cryptococcus neoformans/genética , Cisteína/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Modelos Animais de Doenças , Melaninas/metabolismo , Melaninas/farmacologia , Cápsulas/metabolismo , Cápsulas/farmacologia , Criptococose/microbiologia , Fatores de Virulência/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Enxofre/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia , Mamíferos
10.
Cancer Genomics Proteomics ; 20(1): 75-87, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36581343

RESUMO

BACKGROUND/AIM: Cervical cancer is the fourth most common type of cancer in women worldwide and it is a major cause of cancer-related deaths in developing countries. Despite the marked reduction observed in the rates of the disease as a result of screening programs, it is necessary to develop robust biomarkers that can detect the neoplastic progression early in HPV-related cervical lesions. MATERIALS AND METHODS: We performed comparative mRNA sequencing from exfoliative cervical cytology samples from nine Korean women using the Illumina NovaSeq6000 platform. Each pathological tissue was matched to the corresponding cytological sample. The pathologic diagnosis was scrutinized with ancillary immunohistochemistry and was considered a confirmative (endpoint) diagnosis. The pathological diagnoses consisted of three cases of chronic cervicitis, 2 high-grade squamous intraepithelial lesions (HSILs), 2 squamous cell carcinomas in situ (CIS), and 2 invasive squamous cell carcinomas (SQCCs), respectively. Using bioinformatic analyses, differentially expressed genes (DEGs; fold change ≥1.5; p<0.05) were applied for Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA), and protein-protein interaction (PPI) networks. RESULTS: From a total of 55,882 genes, 438 DEGs were pinpointed; 282 genes were up-regulated and 156 genes down-regulated. These transcriptomic profiles were clearly divided into neoplastic (HSIL, CIS, and SQCC; ≥HSILs) and non-neoplastic lesions. The up-regulated DEGs were HIF-1a, EDN1, PIK3R3, PPP1CA and AKR1C1. GO, GSEA, and PPI network analyses showed marked associations with metabolism, proteolysis, or proteoglycan process pathways in cervical carcinogenesis. CONCLUSION: The transcriptomic analysis using exfoliative cervical cells was more likely representative of its corresponding histopathological diagnosis, thus emphasizing its potential utility in clinical practice. This study provides comprehensive transcriptomic network analyses for robust biomarkers that might present a high potential risk of progression to cancer in the exfoliative cervical cytology; our findings support their clinical utility for improved cervical cancer screening.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/metabolismo , Displasia do Colo do Útero/patologia , Projetos Piloto , Transcriptoma , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/diagnóstico , Detecção Precoce de Câncer , Carcinoma de Células Escamosas/genética , Papillomaviridae/genética , Fosfatidilinositol 3-Quinases/metabolismo
11.
Microorganisms ; 10(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36557651

RESUMO

Group B Streptococcus (GBS, Streptococcus agalactiae) is a Gram-positive bacterium that is commonly found in the gastrointestinal and urogenital tracts. However, its colonization during pregnancy is an important cause of maternal and neonatal morbidity and mortality worldwide. Herein, we specifically looked at GBS in relation to the field of Obstetrics (OB) along with the field of Gynecology (GY). In this review, based on the clinical significance of GBS in the field of OBGY, topics of how GBS is being detected, treated, and should be prevented are addressed.

12.
mBio ; 13(6): e0294422, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36377896

RESUMO

The KEOPS (kinase, putative endopeptidase, and other proteins of small size) complex has critical functions in eukaryotes; however, its role in fungal pathogens remains elusive. Herein, we comprehensively analyzed the pathobiological functions of the fungal KEOPS complex in Cryptococcus neoformans (Cn), which causes fatal meningoencephalitis in humans. We identified four CnKEOPS components: Pcc1, Kae1, Bud32, and Cgi121. Deletion of PCC1, KAE1, or BUD32 caused severe defects in vegetative growth, cell cycle control, sexual development, general stress responses, and virulence factor production, whereas deletion of CGI121 led to similar but less severe defects. This suggests that Pcc1, Kae1, and Bud32 are the core KEOPS components, and Cgi121 may play auxiliary roles. Nevertheless, all KEOPS components were essential for C. neoformans pathogenicity. Although the CnKEOPS complex appeared to have a conserved linear arrangement of Pcc1-Kae1-Bud32-Cgi121, as supported by physical interaction between Pcc1-Kae1 and Kae1-Bud32, CnBud32 was found to have a unique extended loop region that was critical for the KEOPS functions. Interestingly, CnBud32 exhibited both kinase activity-dependent and -independent functions. Supporting its pleiotropic roles, the CnKEOPS complex not only played conserved roles in t6A modification of ANN codon-recognizing tRNAs but also acted as a major transcriptional regulator, thus controlling hundreds of genes involved in various cellular processes, particularly ergosterol biosynthesis. In conclusion, the KEOPS complex plays both evolutionarily conserved and divergent roles in controlling the pathobiological features of C. neoformans and could be an anticryptococcal drug target. IMPORTANCE The cellular function and structural configuration of the KEOPS complex have been elucidated in some eukaryotes and archaea but have never been fully characterized in fungal pathogens. Here, we comprehensively analyzed the pathobiological roles of the KEOPS complex in the globally prevalent fungal meningitis-causing pathogen C. neoformans. The CnKEOPS complex, composed of a linear arrangement of Pcc1-Kae1-Bud32-Cgi121, not only played evolutionarily conserved roles in growth, sexual development, stress responses, and tRNA modification but also had unique roles in controlling virulence factor production and pathogenicity. Notably, a unique extended loop structure in CnBud32 is critical for the KEOPS complex in C. neoformans. Supporting its pleiotropic roles, transcriptome analysis revealed that the CnKEOPS complex governs several hundreds of genes involved in carbon and amino acid metabolism, pheromone response, and ergosterol biosynthesis. Therefore, this study provides novel insights into the fungal KEOPS complex that could be exploited as a potential antifungal drug target.


Assuntos
Cryptococcus neoformans , Proteínas Fúngicas , Humanos , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Ergosterol , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfotransferases/metabolismo , Endopeptidases/metabolismo
13.
Curr Issues Mol Biol ; 44(11): 5139-5152, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36354662

RESUMO

Tumor budding (TB) is a small cluster of malignant cells at the invasive front of a tumor. Despite being an adverse prognosis marker, little research has been conducted on the tumor immune microenvironment of tumor buddings, especially in cervical cancer. Therefore, RNA sequencing was performed using 21 formalin-fixed, paraffin-embedded slides of cervical tissues, and differentially expressed genes (DEGs) were analyzed. Immune Pathway and Gene Database (IMPAGT) was generated for immune profiling. "Pathway in Cancer" was identified as the most enriched pathway for both up- and downregulated DEGs. Kyoto Encyclopedia of Genes and Genomes Mapper and Gene Ontology further revealed the activation of the PI3K/Akt signaling pathway. An IMPAGT analysis revealed immune dysregulation even at the tumor budding stage, especially in the PI3K/Akt/mTOR axis, with a high efficiency and integrity. These findings emphasized the clinical significance of tumor buddings and the necessity of blocking the overactivation of the PI3K/Akt/mTOR pathway to improve targeted therapy in cervical cancer.

14.
Diagnostics (Basel) ; 12(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35885476

RESUMO

A rapid method for obtaining group B streptococcus (GBS) screening results has been required in the obstetric field. We aimed to determine the diagnostic performance of the Loop-Mediated Isothermal Amplification (LAMP) assay is acceptable compared to the existing polymerase chain reaction (PCR) assay. The study involved 527 pregnant women aged 19 to 44 years. Rectovaginal swabs were collected between 35 and 37 weeks of gestation or prior to impending preterm births or term labor without GBS screening. We presented the diagnostic performance of the LAMP assay with a 95% confidence interval (CI) compared to the PCR and microbiological culture. In total, 115 (21.8%), 115 (21.8%) and 23 (4.4%) patients showed positive results using the LAMP, PCR assay and microbiological culture method, respectively. The LAMP assay showed 100% sensitivity (95% CI, 96.8-100.0), 100% specificity (95% CI, 99.1-100.0) and 100% diagnostic accuracy (95% CI, 99.3-100.0) with the reference being the PCR assay. Meanwhile, the LAMP assay showed 87.0% sensitivity (95% CI, 71.0-100.0), 81.2% specificity (95% CI, 77.6-84.7), and 81.4% diagnostic accuracy (95% CI, 78.0-84.8) with the microbiological culture as a reference. This study presented the LAMP assay as an acceptable method for GBS screening with a similar performance to the existing PCR method.

15.
Phys Chem Chem Phys ; 24(19): 11782-11790, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35506867

RESUMO

The ground and excited electronic states of the titled species are investigated with multi-reference configuration interaction and diffuse basis sets. We found that in addition to the valence orbitals, the inclusion of the 4s, 4p, and especially 3d orbitals (although with minimal population) of silicon in the active space of the reference complete active space self-consistent field wavefunction are necessary for the proper convergence of the calculations. We also demonstrate that the aug-cc-pVTZ basis set provides quite accurate results compared to both larger basis sets and basis set limit results at a lower computational cost. The excited states involve excitations within the 3s and 3p orbitals of silicon (especially for the mono- and di-hydrides), followed by excitations from the Si-H bonding orbitals to either silicon valence or Rydberg (4s, 4p) orbitals. The number of electronic states per energy unit decrease as we add hydrogen atoms, and the first excited state of SiH4 is at 9.0 eV and leads to SiH3 + H. All species have stable ground state structures with all hydrogen atoms bound to silicon, except for SiH4+ and SiH4-. The former dissociates to SiH2+ + H2, while the latter loses an electron or can dissociate forming H2 as well.

16.
J Phys Chem A ; 126(17): 2677-2689, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35452242

RESUMO

The rate coefficients for 52 hydrogen shift reactions for silicon nitrides containing up to 6 atoms of silicon and nitrogen have been calculated using the G3//B3LYP composite method and statistical thermodynamics. The overall reaction of substituted acyclic and cyclic silylenes to their respective silene and imine species by a 1,2-hydrogen shift reaction was sorted by three different types of H shift reactions using overall reaction thermodynamics: (1) endothermic H shift between N and Si:, (2) endothermic H shift between Si and Si:, and (3) exothermic H shift between Si and Si:. Endothermic H shift reactions between Si atoms have one dominant activation barrier where the exothermic H shift reaction between Si atoms has two barriers and a stable intermediate. The rate-determining step was determined to be from the intermediate to the substituted silene, and then kinetic parameters for the overall reaction were calculated for the two-step pathway. The single event pre-exponential factors, Ã, and activation energies, Ea, for the three different classes of hydrogen shift reactions of silicon nitrides were computed. The hydrogen shift reaction was explored for acyclic and cyclic monofunctional silicon nitrides, and the type of hydrogen shift reaction gives the most significant influence on the kinetic parameters. Using a supervised machine learning approach, the models for predicting the energy barrier of three different hydrogen shift reactions were generalized and suggested based on selected descriptors.

17.
Eur J Surg Oncol ; 47(12): 3182-3187, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34284905

RESUMO

OBJECTIVE: To evaluate the prognostic and predictive significance of lymphovascular invasion (LVI) and lymph node metastasis of intratumoral budding (ITB) and its correlation with clinicopathological parameters in patients with cervical cancer. METHODS: Total 151 patients with cervical cancer who underwent radical hysterectomy with pelvic and/or paraaortic lymphadenectomy were included. We assessed the status of ITB and peritumoral budding (PTB) in all available hematoxylin and eosin-stained specimens. Univariate and multivariate analyses were performed for ITB, PTB, and other clincopathological parameters as predictors of recurrence. RESULTS: ITBhigh (≥3TB/HPF) was significantly associated with large tumor size, deep stromal invasion, LVI, parametrial invasion, and lymph node metastasis. The numbers of ITBs and PTBs were positively correlated (r2 = 0.754, p < 0.0001). ITBhigh was more frequently observed in squamous cell carcinoma compared with adenocarcinoma and adenosquamous cell carcinoma (p = 0.010). ITBhigh was found to be an independent prognostic factor for tumor recurrence by multivariate analysis (hazard ratio, 1.92; 95% confidence interval [CI], 1.37-9.90; p = 0.026). Multiple logistic regression showed association of LVI (odds ratio [OR], 1.85; 95% CI, 1.11-3.06; p = 0.017) and lymph node metastasis (OR, 1.96; 95% CI, 1.26-4.66; p = 0.019). CONCLUSION: ITBhigh is an independent prognostic factor for tumor recurrence. ITB is a surrogate marker for predicting LVI in cervical cancers. The evaluation of ITB may be readily applied in the clinical setting for improved prognosis and to guide the clinical management of patients with cervical cancer.


Assuntos
Metástase Linfática/patologia , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/cirurgia , Feminino , Humanos , Histerectomia , Excisão de Linfonodo , Pessoa de Meia-Idade , Prognóstico , Fatores de Risco , Carga Tumoral
18.
Chemphyschem ; 21(22): 2627-2642, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32853448

RESUMO

With its high strength, high thermal stability, low density, and high electrical resistance, silicon-nitride-based ceramics have been widely used as gate insulating layers, oxidation masks, and passivation layers. Employing SiN nanomaterials in anode applications also improves rate performances and cycling stability of the lithium-ion batteries. However, a fundamental understanding of the SiN synthetic process remains elusive. SiN gas-phase synthesis can be tailored with a comprehensive understanding of the underlying thermodynamics. In comparison to the characterization data available for solid-state SiN materials, high-level theoretical studies on gas-phase materials possessing Si-N bonds and comprehensive investigation of the SiN chemistry, particularly for nanoclusters, are very uncommon. Thus, we performed a theoretical study of Si and SiN alloy acyclic hydrides and polycyclic clusters to predict electronic structures and thermochemistry using quantum chemical calculation and statistical thermodynamics. Electronic properties by way of highest and lowest occupied molecular orbital energy gap and natural bonding orbitals analysis were calculated to explore the influence of elemental composition and geometry on the stability. Our studies provide characteristic data of SiN species for a data-driven approach to map the design space for discovery of novel silicon-nitride-based ceramic materials for advanced electronic and coating applications.

19.
Nat Commun ; 11(1): 4212, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839469

RESUMO

Phosphatases, together with kinases and transcription factors, are key components in cellular signalling networks. Here, we present a systematic functional analysis of the phosphatases in Cryptococcus neoformans, a fungal pathogen that causes life-threatening fungal meningoencephalitis. We analyse 230 signature-tagged mutant strains for 114 putative phosphatases under 30 distinct in vitro growth conditions, revealing at least one function for 60 of these proteins. Large-scale virulence and infectivity assays using insect and mouse models indicate roles in pathogenicity for 31 phosphatases involved in various processes such as thermotolerance, melanin and capsule production, stress responses, O-mannosylation, or retromer function. Notably, phosphatases Xpp1, Ssu72, Siw14, and Sit4 promote blood-brain barrier adhesion and crossing by C. neoformans. Together with our previous systematic studies of transcription factors and kinases, our results provide comprehensive insight into the pathobiological signalling circuitry of C. neoformans.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica/métodos , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Monoéster Fosfórico Hidrolases/genética , Animais , Análise por Conglomerados , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Feminino , Proteínas Fúngicas/classificação , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Camundongos Endogâmicos , Monoéster Fosfórico Hidrolases/classificação , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases/classificação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais/genética , Termotolerância/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética
20.
Sci Rep ; 9(1): 14398, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591414

RESUMO

CK2α is a constitutively active and highly conserved serine/threonine protein kinase that is involved in the regulation of key cellular metabolic pathways and associated with a variety of tumours and cancers. The most well-known CK2α inhibitor is the human clinical trial candidate CX-4945, which has recently shown to exhibit not only anti-cancer, but also anti-fungal properties. This prompted us to work on the CK2α orthologue, Cka1, from the pathogenic fungus Cryptococcus neoformans, which causes life-threatening systemic cryptococcosis and meningoencephalitis mainly in immunocompromised individuals. At present, treatment of cryptococcosis remains a challenge due to limited anti-cryptococcal therapeutic strategies. Hence, expanding therapeutic options for the treatment of the disease is highly clinically relevant. Herein, we report the structures of Cka1-AMPPNP-Mg2+ (2.40 Å) and Cka1-CX-4945 (2.09 Å). Structural comparisons of Cka1-AMPPNP-Mg2+ with other orthologues revealed the dynamic architecture of the N-lobe across species. This may explain for the difference in binding affinities and deviations in protein-inhibitor interactions between Cka1-CX-4945 and human CK2α-CX-4945. Supporting it, in vitro kinase assay demonstrated that CX-4945 inhibited human CK2α much more efficiently than Cka1. Our results provide structural insights into the design of more selective inhibitors against Cka1.


Assuntos
Caseína Quinase I/química , Caseína Quinase I/metabolismo , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/patogenicidade , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade da Espécie , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...