Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777857

RESUMO

Mast cells are primary cells initiating allergic inflammation by the release of various allergic mediators, such as histamine and pro-inflammatory cytokines. Aspalathin (ASP) is the predominant flavonoid found exclusively in rooibos, an herb that has been traditionally used in allergy relief therapy. In the present study, we investigated the beneficial effects of ASP on mast cell-mediated allergic inflammation. For in vivo study, two well-known mast cell-mediated local and systemic allergic inflammation mouse models were used: passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis mouse models (ASA). Oral administration of ASP dose-dependently suppressed immunoglobulin (Ig)E-mediated PCA responses evidenced by Evans blue extravasation, ear thickening, and mast cell degranulation. ASP also significantly mitigated ovalbumin-induced ASA responses, including hypothermia, histamine secretion, and the production of IgE and interleukin-4. Notably, ASP was more effective in suppressing allergic inflammation than nothofagin, another prominent flavonoid known as an anti-allergic component of rooibos. The regulatory mechanism of mast cell activation by ASP was clarified using mast cell line and primary cultured mast cells (RBL-2H3 and mouse bone marrow-derived mast cells). ASP reduced IgE-stimulated mast cells degranulation and intracellular calcium influx by the inhibition of FcεRI signaling pathway (Lyn, Fyn, and Syk). Moreover, ASP reduced pro-inflammatory cytokine expressions by inhibiting two major transcription factors, nuclear factor of activated T cells and nuclear factor-κB. Collectively, we proposed that ASP could be a potential therapeutic candidate for the treatment of mast cell-mediated allergic inflammatory diseases.

2.
Adv Pharmacol Pharm Sci ; 2024: 5083956, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605816

RESUMO

More than 20% of the world's population suffers from allergic diseases, including allergic asthma, rhinitis, and atopic dermatitis that severely reduce the patient's quality of life. The treatment of allergy has been developed, but there are still unmet needs. Ampelopsis brevipedunculata (Maxim.) Trautv. is a traditional medicinal herb with beneficial bioactivities, such as antioxidant, anti-hypertension, anti-viral, anti-mutagenic, and skin and liver (anti-hepatotoxic) protective actions. However, its anti-allergic effect has not been addressed. This study designed to investigate the pharmacological effect of an ethanol extract of A. brevipedunculata rhizomes (ABE) on mast cell and anaphylaxis models. For in vivo studies, we used ovalbumin-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models. In ASA model, oral administration of ABE (1, 10, and 100 mg/kg) attenuated the anaphylactic responses, such as hypothermia, serum histamine, and IgE productions. In PCA model, ABE also suppressed the plasma extravasation and swelling. The underlying mechanisms of action were identified in various mast cell types. In vitro, ABE (10, 30, and 60 µg/mL) inhibited the release of essential allergic mediators, such as histamine and ß-hexosaminidase, in a concentration-dependent manner. ABE prevented the rapid increase in intracellular calcium levels induced by the DNP-HSA challenge. In addition, ABE downregulated the tumor necrosis factor-α and interleukin-4 by suppressing the activation of nuclear factor-κB. Collectively, this study is the first to identify the anti-allergic effect of ABE, suggesting that ABE is a promising candidate for treating allergic diseases.

3.
ACS Appl Mater Interfaces ; 16(10): 12217-12231, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480984

RESUMO

Psoriasis, a prevalent chronic inflammatory skin ailment affecting approximately 2-3% of the global population, is characterized by persistent symptoms. Dexamethasone, a primary corticosteroid for treating psoriasis, demonstrates notable efficacy; however, its limited skin permeation results in documented adverse effects. To address this, the presented study employed a novel strategy to conjugate gold nanorod and dexamethasone and evaluate their potential for mitigating psoriatic inflammation using an imiquimod-induced mouse model and human skin cells. Our findings revealed enhanced cutaneous penetration of gold nanorod and dexamethasone conjugates compared with that of dexamethasone, owing to superior skin penetration. Gold nanorod and dexamethasone conjugates demonstrated an optimal pharmacological impact at minimal dosages without toxicity during extended use. To further enhance the effectiveness of gold nanorod and dexamethasone conjugates, 808 nm near-infrared laser irradiation, which reacts to gold, was additionally applied to achieve thermal elevation to expedite drug skin penetration. Supplementary laser irradiation at 808 nm significantly ameliorated psoriatic symptoms following deep gold nanorod and dexamethasone conjugates penetration. This corresponded with restored peroxisome proliferator-activated receptor-γ levels and accelerated dexamethasone release from the gold nanorod and dexamethasone conjugates complex. These findings highlight the potential of gold nanorod and dexamethasone conjugates to enhance drug penetration through dermal layers, thereby aiding psoriasis treatment. Moreover, its compatibility with photothermal therapy offers prospects for novel therapeutic interventions across various inflammatory skin disorders.


Assuntos
Nanotubos , Psoríase , Animais , Camundongos , Humanos , Terapia Fototérmica , Ouro/farmacologia , Ouro/uso terapêutico , Psoríase/tratamento farmacológico , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Inflamação/tratamento farmacológico
4.
Artigo em Inglês | MEDLINE | ID: mdl-38230250

RESUMO

For centuries, natural products are regarded as vital medicines for human survival. Clematis terniflora var. mandshurica (Rupr.) Ohwi is an ingredient of the herbal medicine, Wei Ling Xian, which has been used in Chinese medicine to alleviate pain, fever, and inflammation. In particular, C. terniflora leaves have been used to cure various inflammatory diseases, including tonsillitis, cholelithiasis, and conjunctivitis. Based on these properties, this study aimed to scientifically investigate the anti-inflammatory effect of an ethanol extract of leaves of C. terniflora (EELCT) using activated macrophages that play central roles in inflammatory response. In this study, EELCT inhibited the essential inflammatory mediators, such as nitric oxide, cyclooxygenase-2, tumor necrosis factor-α, interleukin- (IL-) 6, IL-1ß, and inducible nitric oxide synthase, by suppressing the nuclear factor-κB and mitogen-activated protein kinase activation in macrophages. Acute lung injury (ALI) is a fatal respiratory disease accompanied by serious inflammation. With high mortality rate, the disease has no effective treatments. Therefore, new therapeutic agents must be developed for ALI. We expected that EELCT can be a promising therapeutic agent for ALI by reducing inflammatory responses and evaluated its action in a lipopolysaccharide- (LPS-) induced ALI model. EELCT alleviated histological changes, immune cell infiltration, inflammatory mediator production, and protein-rich pulmonary edema during ALI. Collectively, our results may explain the traditional usage of C. terniflora in inflammatory diseases and suggest the promising potential of EELCT as therapeutic candidate for ALI.

6.
Cells ; 12(11)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296614

RESUMO

(1) Background: This study aims to elucidate a novel non-transcriptional action of IRF3 in addition to its role as a transcription factor in mast cell activation and associated allergic inflammation; (2) Methods: For in vitro experiments, mouse bone-marrow-derived mast cells (mBMMCs) and a rat basophilic leukemia cell line (RBL-2H3) were used for investigating the underlying mechanism of IRF3 in mast-cell-mediated allergic inflammation. For in vivo experiments, wild-type and Irf3 knockout mice were used for evaluating IgE-mediated local and systemic anaphylaxis; (3) Results: Passive cutaneous anaphylaxis (PCA)-induced tissues showed highly increased IRF3 activity. In addition, the activation of IRF3 was observed in DNP-HSA-treated mast cells. Phosphorylated IRF3 by DNP-HSA was spatially co-localized with tryptase according to the mast cell activation process, and FcεRI-mediated signaling pathways directly regulated that activity. The alteration of IRF3 affected the production of granule contents in the mast cells and the anaphylaxis responses, including PCA- and ovalbumin-induced active systemic anaphylaxis. Furthermore, IRF3 influenced the post-translational processing of histidine decarboxylase (HDC), which is required for granule maturation; and (4) Conclusion: Through this study, we demonstrated the novel function of IRF3 as an important factor inducing mast cell activation and as an upstream molecule for HDC activity.


Assuntos
Anafilaxia , Receptores de IgE , Ratos , Camundongos , Animais , Receptores de IgE/metabolismo , Mastócitos/metabolismo , Linhagem Celular , Inflamação/metabolismo
7.
BMC Pharmacol Toxicol ; 24(1): 27, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098554

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease that affects from children to adults widely, presenting symptoms such as pruritus, erythema, scaling, and dryness. Lupeol, a pentacyclic triterpenoid, has anti-inflammatory and antimicrobial activities. Based on these properties, the therapeutic effects of lupeol on skin disorders have been actively studied. In the present study, we aimed to determine the effectiveness of lupeol on AD. METHODS: We utilized tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes and 2, 4-dinitrochlorobenzene/Dermatophagoides farinae extract (DFE)-induced AD mice to confirm the action. RESULTS: Lupeol inhibited TNF-α/IFN-γ-stimulated keratinocytes activation by reducing the expressions of pro-inflammatory cytokines and chemokines which are mediated by the activation of signaling molecules such as signal transducer and activator of transcription 1, mitogen-activated protein kinases (p38 and ERK), and nuclear factor-κB. Oral administration of lupeol suppressed epidermal and dermal thickening and immune cell infiltration in ear tissue. Immunoglobulin (Ig) E (total and DFE-specific) and IgG2a levels in serum were also reduced by lupeol. The gene expression and protein secretion of T helper (Th) 2 cytokines, Th1 cytokines, and pro-inflammatory cytokine in ear tissue were decreased by lupeol. CONCLUSIONS: These results suggest that lupeol has inhibitory effects on AD-related responses. Therefore, lupeol could be a promising therapeutic agent for AD.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno/efeitos adversos , Dermatophagoides farinae/metabolismo , Pele , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Imunoglobulina E , Interferon gama , Triterpenos Pentacíclicos/efeitos adversos , Inflamação/tratamento farmacológico , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Modelos Animais de Doenças
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982304

RESUMO

Receptor-interacting protein kinase (RIP) family 1 signaling has complex effects on inflammatory processes and cell death, but little is known concerning allergic skin diseases. We examined the role of RIP1 in Dermatophagoides farinae extract (DFE)-induced atopic dermatitis (AD)-like skin inflammation. RIP1 phosphorylation was increased in HKCs treated with DFE. Nectostatin-1, a selective and potent allosteric inhibitor of RIP1, inhibited AD-like skin inflammation and the expression of histamine, total IgE, DFE-specific IgE, IL-4, IL-5, and IL-13 in an AD-like mouse model. The expression of RIP1 was increased in ear skin tissue from a DFE-induced mouse model with AD-like skin lesions and in the lesional skin of AD patients with high house dust mite sensitization. The expression of IL-33 was down-regulated after RIP1 inhibition, and the levels of IL-33 were increased by over-expression of RIP1 in keratinocytes stimulated with DFE. Nectostatin-1 reduced IL-33 expression in vitro and in the DFE-induced mouse model. These results suggest that RIP1 can be one of the mediators that regulate IL-33-mediated atopic skin inflammation by house dust mites.


Assuntos
Dermatite Atópica , Animais , Camundongos , Antígenos de Dermatophagoides , Citocinas/farmacologia , Dermatite Atópica/patologia , Dermatophagoides farinae , Modelos Animais de Doenças , Imunoglobulina E , Inflamação/patologia , Interleucina-33/farmacologia , Extratos Vegetais/farmacologia , Pyroglyphidae , Pele/patologia
9.
Int J Nanomedicine ; 17: 4599-4617, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199478

RESUMO

Purpose: The protein corona surrounding nanoparticles has attracted considerable attention as it induces subsequent inflammatory responses. Although mesoporous silica nanoparticles (MSN) are commonly used in medicines, cosmetics, and packaging, the inflammatory effects of the MSN protein corona on the cutaneous system have not been investigated till date. Methods: We examined the greater plasma protein adsorption on MSN leads to serious inflammatory reactions in Dermatophagoides farinae extract (DFE)-induced mouse atopic dermatitis (AD)-like skin inflammation because of increased uptake by keratinocytes. Results: We compare the AD lesions induced by MSN and colloidal (non-porous) silica nanoparticles (CSN), which exhibit different pore architectures but similar dimensions and surface chemistry. MSN-corona treatment of severe skin inflammation in a DFE-induced in vivo AD model greatly increases mouse ear epidermal thickness and infiltration of immune cells compared with the CSN-corona treatment. Moreover, MSN-corona significantly increase AD-specific immunoglobulins, serum histamine, and Th1/Th2/Th17 cytokines in the ear and lymph nodes. MSN-corona induce more severe cutaneous inflammation than CSN by significantly decreasing claudin-1 expression. Conclusion: This study demonstrates the novel impact of the MSN protein corona in inducing inflammatory responses through claudin-1 downregulation and suggests useful clinical guidelines for MSN application in cosmetics and drug delivery systems.


Assuntos
Dermatite Atópica , Nanopartículas , Coroa de Proteína , Adsorção , Animais , Claudina-1/uso terapêutico , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Histamina , Imunoglobulina E , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Extratos Vegetais/farmacologia , Dióxido de Silício/uso terapêutico
10.
Adv Sci (Weinh) ; 9(34): e2202800, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36180414

RESUMO

Although plasma is a promising technology in various fields, its clinical application is restricted by several limitations. A cold atmospheric plasma (CAP) patch is fabricated to help overcome hurdles, especially when treating skin diseases. This patch has surface dielectric barrier discharge, which generates reactive oxygen species (ROS) and reactive nitrogen species (RNS) on a flexible polymer film surface on which the embedded electrode induces a locally strong electric field. The effect of the CAP patch on psoriasis is also evaluated. The distinct characteristics of psoriasis between the lesion and non-lesion area allow the CAP patch to be suitable for only lesion area for its treatment. The CAP patch induces the opening of calcium channels in keratinocytes, thereby restoring abnormal keratinocyte differentiation and the collapse of the tight junction; thus, alleviating psoriatic symptoms. In addition, the favorable effect is due to the induction of ROS/RNS by the CAP patch, not the electric field generated during plasma generation. The findings indicate that the proposed portable CAP patch can help treat inflammatory skin disorders, especially psoriasis. As this can be used easily as a combination therapy with existing drugs, it may help reduce side effects caused by existing drugs.


Assuntos
Gases em Plasma , Gases em Plasma/uso terapêutico , Anti-Inflamatórios
11.
Inflammation ; 45(4): 1680-1691, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35257273

RESUMO

Atopic dermatitis (AD) is a complex and multifactorial skin disease characterized by skin inflammation and intense pruritus. There are many commercially available treatments such as topical corticosteroids and immunosuppressants to treat of AD, but their effectiveness is limited, and frequent use of these treatments can cause serious side effects. Therefore, the development of new therapeutic agents is necessary for the treatment of AD. Hence, an alternative agent that was derived from natural products that are effective and safe for AD treatment was investigated using experimental models. The biological activity of euscaphic acid has anti-inflammatory, anticoagulant, and antioxidant effects. Despite the various biomedical properties of euscaphic acid, its therapeutic effects on AD have not been well studied. In this study, we investigated the effects of euscaphic acid on skin inflammation and pruritus in AD mouse model. The effects of euscaphic acid were investigated in activated human epidermal keratinocytes and leukemia T lymphoblast cell lines, and Dermatophagoides farina extract and 2,4-dinitrochlorobenzene-induced AD mouse model. Euscaphic acid ameliorated AD properties, such as the expression of inflammatory cytokines and activation of transcription factors. In addition, euscaphic acid reduced critical factors for pruritus such as immunoglobulin E hyperproduction, mast cell invasion, and interleukin-33 expression. Taken together, euscaphic acid could be a potent therapeutic agent for the treatment of AD.


Assuntos
Dermatite Atópica , Animais , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dinitroclorobenzeno/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Prurido/tratamento farmacológico , Prurido/metabolismo , Pele , Triterpenos
12.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641629

RESUMO

Psoriasis is a chronic inflammatory skin disease accompanied by excessive keratinocyte proliferation. Corticosteroids, vitamin D3 analogs, and calcineurin inhibitors, which are used to treat psoriasis, have diverse adverse effects, whereas natural products are popular due to their high efficiency and relatively low toxicity. The roots of the Cudrania tricuspidata (C. tricuspidata) are known to have diverse pharmacological effects, among which the anti-inflammatory effect is reported as a potential therapeutic agent in skin cells. Nevertheless, its effectiveness against skin diseases, especially psoriasis, is not fully elucidated. Here, we investigated the effect of cudraxanthone D (CD), extracted from the roots the C. tricuspidata Bureau, on psoriasis using an imiquimod (IMQ)-induced mouse model and the tumor necrosis factor (TNF)-α/interferon (IFN)-γ-activated keratinocytes. IMQ was topically applied to the back skin of C57BL/6 mice for seven consecutive days, and the mice were orally administered with CD. This resulted in reduced psoriatic characteristics, such as the skin thickness and Psoriasis Area Severity Index score, and the infiltration of neutrophils in IMQ-induced skin. CD inhibited the serum levels of TNF-α, immunoglobulin G2a, and myeloperoxidase, and the expression of Th1/Th17 cells in splenocytes. In TNF-α/IFN-γ-activated keratinocytes, CD reduced the expressions of CCL17, IL-1ß, IL-6, and IL-8 by inhibiting the phosphorylation of STAT1 and the nuclear translocation of NF-kB. Taken together, these results suggest that CD could be a potential drug candidate for the treatment of psoriasis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Imiquimode/efeitos adversos , Queratinócitos/citologia , Moraceae/química , Psoríase/tratamento farmacológico , Xantonas/administração & dosagem , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Interferon gama/efeitos adversos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , NF-kappa B/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Psoríase/induzido quimicamente , Psoríase/imunologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/farmacologia , Xantonas/farmacologia
13.
Int Immunopharmacol ; 99: 107994, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435583

RESUMO

BACKGROUND: Mast cells are the primary cells that play a crucial role in the allergic diseases via secretion of diverse allergic mediators. Ursolic acid (UA) is a naturally occurring anti-inflammatory triterpenoid possessing various biological properties such as immune regulation, antioxidant, and anti-fibrotic. The aim of this study was to evaluate the effects of UA in FcεRI-mediated mast cell activation and allergic inflammation. METHODS: In this study, mast cells were stimulated with immunoglobulin E (IgE) and the anti-allergic effects of UA were assessed by measuring the levels of allergic mediators. In vivo effects of UA were observed by generating passive cutaneous anaphylaxis (PCA) and active systemic anaphylaxis (ASA) in mouse model. RESULTS: We found that UA inhibited the degranulation of mast cell by suppressing the intracellular calcium level in a concentration-dependent manner. UA inhibited the expression and the release of pro-inflammatory cytokines in mast cells. Anti-allergic effects of UA were demonstrated via suppression of FcεRI-mediated signaling molecules. In addition, UA inhibited the IgE-mediated PCA and ovalbumin-induced ASA reactions in a dose-dependent manner. CONCLUSIONS: Based on these findings, we suggest that UA might have potential as a therapeutic candidate for the treatment of allergic inflammatory diseases via inhibition of FcεRI-mediated mast cell activation.


Assuntos
Anti-Inflamatórios/farmacologia , Degranulação Celular/efeitos dos fármacos , Inflamação/metabolismo , Mastócitos/metabolismo , Triterpenos/farmacologia , Anafilaxia/induzido quimicamente , Anafilaxia/tratamento farmacológico , Animais , Cálcio/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Masculino , Transtornos da Ativação de Mastócitos , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ácido Ursólico
14.
Biomed Pharmacother ; 137: 111359, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33761595

RESUMO

Atopic dermatitis (AD) is a chronic inflammatory skin disorder that affects 10-20% of the world's population. Therefore, the discovery of drugs for the treatment of AD is important for human health. Hispidulin (HPD; also known as scutellarein 6-methyl ether or dinatin) is a natural flavone that exerts anti-inflammatory effects. In the present study, the effectiveness of HPD on AD-like skin inflammation was investigated. We used a mouse AD model through repeated exposure of mice to 2,4-dinitrochlorobenzene and house dust mite extract (Dermatophagoides farinae extract, DFE) to the ears. In addition, tumor necrosis factor-α and interferon-γ-activated keratinocytes (HaCaT cells) were used to investigate the underlying mechanism of HPD action. Oral administration of HPD alleviated AD-like skin inflammations: it reduced ear thickness; serum immunoglobulin (Ig)E, DFE-specific IgE, and IgG2a levels; and inflammatory cell infiltration. HPD reduced the expression of pro-inflammatory cytokines and chemokines through inhibition of signal transducer and activator of transcription 1 nuclear factor-κB in HaCaT cells. Taken together, these results suggest that HPD could be a potential drug candidate for the treatment of AD.


Assuntos
Antialérgicos/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Dinitroclorobenzeno , Flavonas/uso terapêutico , Pyroglyphidae/imunologia , Pele/patologia , Animais , Antígenos de Dermatophagoides , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Eosinófilos/efeitos dos fármacos , Feminino , Imunoglobulinas/metabolismo , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C
15.
J Transl Med ; 18(1): 307, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762722

RESUMO

BACKGROUND: Treatment of human lung squamous cell carcinoma (LUSC) using current targeted therapies is limited because of their diverse somatic mutations without any specific dominant driver mutations. These mutational diversities preventing the use of common targeted therapies or the combination of available therapeutic modalities would require a preclinical animal model of this tumor to acquire improved clinical responses. Patient-derived xenograft (PDX) models have been recognized as a potentially useful preclinical model for personalized precision medicine. However, whether the use of LUSC PDX models would be appropriate enough for clinical application is still controversial. METHODS: In the process of developing PDX models from Korean patients with LUSC, the authors investigated the factors influencing the successful initial engraftment of tumors in NOD scid gamma mice and the retainability of the pathological and genomic characteristics of the parental patient tumors in PDX tumors. CONCLUSIONS: The authors have developed 62 LUSC PDX models that retained the pathological and genomic features of parental patient tumors, which could be used in preclinical and co-clinical studies. Trial registration Tumor samples were obtained from 139 patients with LUSC between November 2014 and January 2019. All the patients provided signed informed consents. This study was approved by the institutional review board (IRB) of Samsung Medical Center (2018-03-110).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Animais , Carcinoma de Células Escamosas/genética , Humanos , Pulmão , Neoplasias Pulmonares/genética , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Pharmacother ; 129: 110466, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32768955

RESUMO

Psoralea corylifolia is a medicinal herb that provides advantageous pharmacological effects against vitiligo and skin rash. Former studies have shown that bakuchicin, a furanocoumarin compound from the fruits of P. corylifolia, has therapeutic effects against inflammation, and infection. This study aimed to define the pharmacological effects of bakuchicin on inflammatory responses and lichenification, the major symptoms of atopic dermatitis (AD). To induce AD-like skin inflammation, we exposed the ears of female BALB/c mice to 2, 4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae (house dust mite) extract (DFE) for 4 weeks. Intragastric administration of bakuchicin attenuated the symptoms of AD-like skin inflammation, as evident by reductions in ear thickness, erythema, and keratosis. Bakuchicin also reversed increases in auricular epidermal and dermal layer thicknesses, and attenuated eosinophil and mast cell infiltration in AD-induced mice. It also suppressed Th2 gene expression as well as that of pro-inflammatory cytokines and chemokines, such as interleukin (IL)-4, IL-13, IL-31, IL-1ß, IL-6, CXCL-1, and CCL-17 in the ear tissue. The levels of total and DFE-specific immunoglobulin (Ig)E, and IgG2a in the mice sera were reduced by the bakuchicin. To investigate the effect of bakuchicin on keratinocytes, experiments were performed using HaCaT cells, the representative cell type used in skin disease studies. Tumor necrosis factor-α and interferon-γ were used to activate keratinocytes. Bakuchicin suppressed Th2 gene expression and that of pro-inflammatory cytokines and chemokines; it also suppressed STAT-1 phosphorylation and the nuclear translocation of NF-κB in activated keratinocytes. These results suggest that bakuchicin attenuated AD symptoms, thus suggesting it as a potential therapeutic agent for the treatment of AD.


Assuntos
Anti-Inflamatórios/farmacologia , Dermatite Atópica/prevenção & controle , Fármacos Dermatológicos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Queratinócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Animais , Antígenos de Dermatophagoides , Proteínas de Artrópodes , Linhagem Celular , Doença Crônica , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/metabolismo , Dermatite Atópica/patologia , Dinitroclorobenzeno , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Queratinócitos/metabolismo , Queratinócitos/patologia , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosforilação , Fator de Transcrição STAT1/metabolismo , Pele/metabolismo , Pele/patologia
17.
Int Immunopharmacol ; 87: 106767, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32679548

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by hyperproliferation and abnormal differentiation of epidermal keratinocytes accompanied by increased infiltration of immune cells. Previous studies have demonstrated that hispidulin (4',5,7-trihydroxy-6-methoxyflavone, HPD) has various pharmacological benefits such as anti-fungal, anti-inflammation, and anti-allergic effects. This study investigated the effectiveness of HPD to treat psoriasis using an imiquimod (IMQ)-induced mouse model and activated keratinocytes. IMQ was topically applied to the back skin of mice for six consecutive days, and the mice were orally administered HPD. Based on the histological observation and immunological analysis, oral administration of HPD suppressed psoriatic characteristics including skin thickness, psoriasis area severity index, transepidermal water loss, and neutrophil infiltration. HPD alleviated pathologically increased levels of immunoglobulin G2a, myeloperoxidase, and tumor necrosis factor-α. Splenic Th1 and Th17 cell populations were also reduced by HPD in the murine model. In addition, in activated keratinocytes, HPD inhibited gene expression of Th1- and Th17-associated cytokines and chemokines, and phosphorylation of mitogen-activated protein kinases and nuclear factor-κB. In summary, HPD alleviates psoriasis skin inflammation in vivo and in vitro. Therefore, we suggest that HPD would be a potent therapeutic candidate for the treatment of psoriasis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Flavonas/uso terapêutico , Psoríase/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Linhagem Celular , Citocinas/imunologia , Feminino , Flavonas/farmacologia , Humanos , Imiquimode , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Psoríase/induzido quimicamente , Psoríase/imunologia , Baço/efeitos dos fármacos , Baço/imunologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia
18.
Int Immunopharmacol ; 83: 106398, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32197228

RESUMO

The functional inhibition of mast cells, which serve as a key effector cells in allergic reactions may be a specific target for treating immunoglobulin (Ig)E-mediated allergic reactions, which occur in various allergic diseases including anaphylaxis, asthma, and atopic dermatitis. In this study, we demonstrated the effects of dabrafenib, a therapeutic agent used to treat metastatic melanoma, with a focus on mast cell activation and local cutaneous anaphylaxis. In two types of mast cells (RBL-2H3 and mouse bone marrow-derived mast cells), dabrafenib (0.01, 0.1, 1 µM) pretreatment significantly decreased IgE-induced degranulation, intracellular calcium influx, and the activity of intracellular signaling molecules, such as Lyn, Syk, Akt, and PLCγ. Dabrafenib ameliorated mRNA and protein expression levels of interleukin-4 and tumor necrosis factor-α by the reduction of nuclear localization of nuclear factor-κB and nuclear factor of activated T-cells. In passive cutaneous anaphylaxis, oral administration of dabrafenib (0.1, 1, 10 mg/kg) reduced local pigmentation and ear thickness in a dose-dependent manner. Taken together, these results suggest that dabrafenib is a therapeutic drug candidate that controls IgE-mediated allergic inflammatory diseases through suppression of mast cell activity.


Assuntos
Anafilaxia/tratamento farmacológico , Antineoplásicos/uso terapêutico , Imidazóis/uso terapêutico , Mastócitos/imunologia , Melanoma/tratamento farmacológico , Oximas/uso terapêutico , Pele/patologia , Linfócitos T/imunologia , Animais , Sinalização do Cálcio , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoglobulina E/metabolismo , Interleucina-4/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , NF-kappa B/metabolismo , Metástase Neoplásica
19.
Biomed Pharmacother ; 122: 109743, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918284

RESUMO

Polyozellus multiplex is an edible mushroom that offers beneficial pharmacological effects against intestinal inflammation and cancer. Previous studies have demonstrated that polyozellin, a major component of P. multiplex, has therapeutic activities against inflammation, cancer, and oxidative stress-related disorders. This study aimed to determine the pharmacological effects of polyozellin on inflammatory and pruritic responses, the major symptoms of atopic dermatitis (AD), and to define its underlying mechanism of action. Our results showed that polyozellin inhibited the expression of inflammatory cytokines and chemokines through blockade of signal transducer and activator of transcription 1 and nuclear factor-κB in activated keratinocytes, the major cells involved in AD progression. Based on the histological and immunological analyses, oral treatment with polyozellin attenuated the Dermatophagoides farinae extract (DFE)/2,4-dinitrochlorobenzene (DNCB)-induced atopic inflammatory symptoms in the skin. Pruritus is an unpleasant sensation for AD patients that causes scratching behavior and ultimately exacerbates the severity of AD. To find a possible explanation for the anti-pruritic effects of polyozellin, we investigated its effects on mast cells and mast cell-derived histamines. Oral treatment with polyozellin reduced the DFE/DNCB-induced tissue infiltration of mast cells, the serum histamine levels, and the histaminergic scratching behaviors. Additionally, polyozellin decreased the immunoglobulin E-stimulated degranulation of mast cells. Taken together, the findings of this study provide us with novel insights into the potential pharmacological targets of polyozellin for treating AD by inhibiting the inflammatory and pruritic responses.


Assuntos
Dermatite Atópica/tratamento farmacológico , Furanos/farmacologia , Inflamação/tratamento farmacológico , Queratinócitos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/farmacologia , Feminino , Histamina/metabolismo , Humanos , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Queratinócitos/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
J Ethnopharmacol ; 250: 112484, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31843576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A promising approach to treat a variety of diseases are considered as complementary and alternative herbal medicines. Prunus serrulata var. spontanea L. (Rosaceae) is used as herbal medicine to treat allergic diseases according to the Donguibogam, a tradition medical book of the Joseon Dynasty in Korea. AIM OF THE STUDY: We prepared the aqueous extract of the bark of P. serrulata (AEBPS) and aimed to investigate the effects in mouse anaphylaxis models and various types of mast cells, including RBL-2H3, primary cultured peritoneal and bone marrow-derived mast cells. MATERIALS AND METHODS: We used ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) and immunoglobulin (Ig) E-mediated passive cutaneous anaphylaxis (PCA) models, in vivo. The control drug dexamethasone (10 mg/kg) was used to compare the effectiveness of AEBPS (1-100 mg/kg). In vitro, IgE-stimulated mast cells were used to confirm the role of AEBPS (1-100 µg/mL). For statistical analyses, p values less than 0.05 were considered to be significant. RESULTS: In ASA model, oral administration of AEBPS suppressed the hypothermia and increased level of serum histamine in a dose-dependent manner. AEBPS attenuated the serum IgE, OVA-specific IgE, and interleukin (IL)-4. Oral administration of AEBPS also blocked mast cell-dependent PCA. AEBPS suppressed degranulation of mast cells by reducing intracellular calcium level in mast cells. AEBPS inhibited tumor necrosis factor-α and IL-4 expression and secretion in a concentration-dependent manner through the reduction of nuclear factor-κB. CONCLUSIONS: On the basis of these findings, AEBPS could serve as a potential therapeutic target for the management of mast cell-mediated allergic inflammation and as a regulator of mast cell activation.


Assuntos
Anafilaxia/tratamento farmacológico , Mastócitos/imunologia , Extratos Vegetais/farmacologia , Prunus/química , Anafilaxia/imunologia , Animais , Relação Dose-Resposta a Droga , Histamina/sangue , Imunoglobulina E/imunologia , Masculino , Medicina Tradicional Coreana , Camundongos , Camundongos Endogâmicos ICR , Ovalbumina/imunologia , Anafilaxia Cutânea Passiva/efeitos dos fármacos , Anafilaxia Cutânea Passiva/imunologia , Casca de Planta , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...