Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 12: 715241, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475865

RESUMO

A new formulation, nanoprebiotics [e.g., phthalyl pullulan nanoparticles (PPNs)], was demonstrated to enhance the antimicrobial activity of probiotics [e.g., Lactobacillus plantarum (LP)] in vitro through intracellular stimulation better than that by backbone prebiotics, which are commonly used. In this study, we aimed to investigate whether this combination would exert distinct effects as synbiotics in vivo. Synbiotics combinations of LP, pullulan, and PPNs were used as experimental treatments in a dysbiosis-induced murine model, and their restorative effect was assessed using pathogen Escherichia coli K99 challenge. Our results showed that the E. coli infection was suppressed markedly in the experimental group fed with synbiotics containing PPNs. In addition, the decrease in serum endotoxin level after synbiotics treatment suggested the reinforcement of the gut barrier. Comparison of treatment groups, including a normal control group, showed that synbiotics containing PPNs increased microbial diversity, which is a representative parameter of healthy status. Furthermore, distinct from probiotics treatment alone, synbiotics showed additive effects of enrichment of several well-known beneficial bacteria such as Lactobacillus, Bifidobacterium, and other butyrate-producing bacteria including Faecalibacterium. Collectively, our results indicate that synbiotics containing PPNs are effective at restoring gut dysbiosis, suppressing pathogenic infection, and increasing microbial diversity, suggesting that synbiotics with nanoprebiotics have the potential to be a novel strategy for ameliorating gut dysbiosis and infectious diseases.

2.
Vaccine ; 39(30): 4072-4081, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34127296

RESUMO

Lactic acid bacteria (LAB) have been widely studied as mucosal vaccine delivery carriers against many infectious diseases for heterologous expression of protein antigens. There are three antigen expression strategies for LAB: cytoplasmic expression (CE), cell surface display (SD), and extracellular secretion (ES). Despite the generally higher protein expression level and many observations of antigen-specific immunogenicity in CE, its application as a mucosal vaccine has been overlooked relative to SD and ES because of the antigens enclosed by the LAB cell wall. We hypothesized that the antigens in CE could be released from the LAB into the intestinal lumen before host bacterial access to gut-associated lymphoid tissue (GALT), which could contribute to antigen-specific immune responses after oral administration. To elucidate this hypothesis, three recombinant Lactobacillus plantarum (LP) strains were constructed to produce a model antigen, BmpB, with or without an M cell-targeting moiety, and their immunogenicities were analyzed comparatively as oral vaccines in mouse model. The data indicated that the recombinant LPs producing BmpBs with different conformations could induce mucosal immunity differentially. This suggests that the cytoplasmic antigens in LAB could be released into the intestinal lumen, subsequently translocated through M cells, and stimulate the GALT to generate antigen-specific immune responses. Therefore, the CE strategy has great potential, especially in the application of oral LAB vaccines as well as SD and ES strategies. This research provides a better understanding of the mechanism for recombinant oral LAB vaccines and gives insight to the future design of LAB vaccines and oral delivery applications for useful therapeutic proteins.


Assuntos
Lactobacillales , Administração Oral , Animais , Antígenos , Imunidade nas Mucosas , Mucosa Intestinal , Camundongos , Vacinas Sintéticas/genética
3.
J Microbiol Biotechnol ; 30(9): 1404-1411, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32522956

RESUMO

Lactic acid bacteria (LAB) play an important role in dairy fermentations, notably as cheese starter cultures. During the cheese production and ripening period, various enzymes from milk, rennet, starter cultures, and non-starter LABs are involved in flavor formation pathways, including glycolysis, proteolysis, and lipolysis. Among these three pathways, starter LABs are particularly related to amino acid degradation, presumably as the origins of major flavor compounds. Therefore, we used several enzymes as major criteria for the selection of starter bacteria with flavor-forming ability. Lactococcus lactis subsp. lactis LDTM6802 and Lactococcus lactis subsp. cremoris LDTM6803, isolated from Korean raw milk and cucumber kimchi, were confirmed by using multiplex PCR and characterized as starter bacteria. The combinations of starter bacteria were validated in a miniature Gouda-type cheese model. The flavor compounds of the tested miniature cheeses were analyzed and profiled by using an electronic nose. Compared to commercial industrial cheese starters, selected starter bacteria showed lower pH, and more variety in their flavor profile. These results demonstrated that LDTM6802 and LDTM6803 as starter bacteria have potent starter properties with a characteristic flavor-forming ability in cheese.


Assuntos
Queijo/microbiologia , Lactococcus lactis/metabolismo , Lactococcus/metabolismo , Paladar , Fermentação , Microbiologia de Alimentos , Lactobacillales/metabolismo
4.
Food Sci Biotechnol ; 29(3): 419-429, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32257526

RESUMO

Alpha lipoic acid (LA) and conjugated linoleic acid (CLA) have been well-documented on a variety of functional effects in health foods. The main purpose of this study was focused on the additive anti-inflammatory activity of the combination of LA and CLA in vitro. Raw 264.7 cells induced by lipopolysaccharide were treated with LA and CLA individually or in combination at a variety of concentration ranges. Co-treating 25 µM of LA and 25 µM of CLA significantly inhibited pro-inflammatory cytokines compared to the same concentration of single LA- or CLA-treated group. The molecular mechanism of anti-inflammation by a combination of these compounds was attributed to extracellular signal-regulated kinase-1 (ERK1) and peroxisome proliferator-activated receptor gamma (PPARγ). Also, the molecular interaction between both compounds was confirmed by NMR. Our findings suggested that the combination of CLA and LA showed potential additive effect on anti-inflammation through the molecular interaction of both compounds.

5.
Vet Microbiol ; 242: 108604, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122610

RESUMO

Here, we examined the efficacy of are combinant subunit antigen-based oral vaccine for preventing porcine epidemic diarrhea virus (PEDV). First, we generated a soluble recombinant partial spike S1 protein (aP2) from PEDV in E. coli and then evaluated the utility of aP2 subunit vaccine-loaded hydroxypropyl methylcellulose phthalate microspheres (HPMCP) and RANKL-secreting L. lactis (LLRANKL) as a candidate oral vaccine in pregnant sows. Pregnant sows were vaccinated twice (with a 2 week interval between doses) at 4 weeks before farrowing. Titers of virus-specific IgA antibodies in colostrum, and neutralizing antibodies in serum, of sows vaccinated with HPMCP (aP2) plus LL RANKL increased significantly at 4 weeks post-first vaccination. Furthermore, the survival rate of newborn suckling piglets delivered by sows vaccinated with HPMCP (aP2) plus LL RANKL was similar to that of piglets delivered by sows vaccinated with a commercial killed porcine epidemic diarrhea virus (PED) vaccine. The South Korean government promotes a PED vaccine program (live-killed-killed) to increase the titers of IgA and IgG antibodies in pregnant sows and prevent PEDV. The oral vaccine strategy described herein, which is based on a safe and efficient recombinant subunit antigen, is an alternative PED vaccination strategy that could replace the traditional strategy, which relies on attenuated live oral vaccines or artificial infection with virulent PEDV.


Assuntos
Infecções por Coronavirus/veterinária , Lactobacillus/imunologia , Metilcelulose/análogos & derivados , Ligante RANK/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Administração Oral , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Colostro/imunologia , Infecções por Coronavirus/prevenção & controle , Feminino , Metilcelulose/administração & dosagem , Microesferas , Vírus da Diarreia Epidêmica Suína , Gravidez , Ligante RANK/administração & dosagem , Suínos , Doenças dos Suínos/virologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem
6.
Tissue Eng Regen Med ; 17(1): 33-44, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32002844

RESUMO

BACKGROUND: Despite the many advantages of recombinant subunit vaccines, they have critical weaknesses that include a low efficacy for promoting cellular and humoral immune responses against antigens because of their poor immunogenicity, and a rapidly cleared properties as a result of proteolytic enzymes in the body. To circumvent these problems, we developed mannan-decorated inulin acetate microparticles (M-IA MPs) that functioned as carriers and adjuvants for immunization with the recombinant foot-and-mouth disease multi-epitope subunit vaccine (M5BT). METHODS: The M5BT-loaded M-IA MPs were obtained by a double-emulsion solvent-evaporation method. Their properties including morphology, size and release ability were determined by field emission scanning electron microscope, dynamic light-scattering spectrophotometer and spectrophotometer. To assess the immunization efficacy of the MPs, mice were immunized with MPs and their sera were analyzed by ELISA. RESULTS: The M-IA MPs obtained by a double-emulsion solvent-evaporation method were spherical and approximately 2-3 µm, and M5BT was encapsulated in the M-IA MPs. The M5BT-loaded M-IA MPs showed higher antigen-specific IgG, IgG1, IgG2a and anti-FMDV antibodies than the M5BT-loaded IA MPs and the Freund's adjuvant as a control. CONCLUSION: The M-IA MPs showed a powerful and multifunctional polymeric system that combined two toll-like receptor agonists compared to the conventional adjuvant.


Assuntos
Epitopos , Febre Aftosa/imunologia , Imunização , Vacinação , Vacinas de Subunidades Antigênicas/imunologia , Adjuvantes Imunológicos , Animais , Antígenos , Imunidade Humoral , Imunoglobulina G , Inulina , Camundongos , Vacinas Sintéticas
7.
Biomaterials ; 218: 119360, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336278

RESUMO

Recently, probiotics has drawn much attention as an alternative of antibiotics because overuse use of antibiotics has caused widespread bacterial resistance. Given that prebiotics enhance the activity of probiotics, we prepared phthalyl dextran nanoparticles (PDNs) by conjugation of phthalic anhydride with dextran to form a prebiotic and checked its effects on the cellular and antimicrobial properties of the probiotics. First, we found that the internalization of PDNs by probiotics was dependent on temperature, time, and glucose transporters. Internalization of PDNs enhanced the production of antimicrobial peptides by probiotics through self-defense mechanism and resulted in higher antimicrobial activities against Gram-positive and -negative pathogens compared to probiotics themselves. Moreover, pediocin produced by PDN-internalized probiotics was able to suppress pathogenic gut infections and alter the population of gut microbiome in vivo. The enhanced antimicrobial property of Pediococcus acidilactidi internalized with PDNs could decrease the number of pathogens and increase beneficial bacteria species in mice. Furthermore, the composition of gut microbiome was changed, and resulted in preventing reduction of the diversity of the microflora. Our results indicate that PDNs as a new type of prebiotic can regulate probiotic bacterial metabolism, suggesting a new avenue for probiotic modulation and their use in addressing the challenge of bacterial resistance.


Assuntos
Anti-Infecciosos/química , Dextranos/química , Nanopartículas/química , Prebióticos , Probióticos/química , Anti-Infecciosos/farmacologia , Pediococcus/efeitos dos fármacos , Peptídeos/química
8.
Front Microbiol ; 10: 142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787918

RESUMO

Synbiotics, which are the combination of probiotics and prebiotics, have recently attracted attention because of their synergistic net health benefits. Probiotics have been used as alternatives to antibiotics. Among the probiotics, Lactobacillus plantarum (LP) has shown strong antimicrobial activity against Escherichia coli K99, a major livestock pathogen. In this study, we aimed to investigate the antimicrobial activity of phthalyl pullulan nanoparticle (PPN)-treated LP. Interestingly, when PPNs were added to LP, the PPNs were internalized into the LP through an energy-dependent and galactose transporter-dependent mechanism. Additionally, more plantaricin, a natural antibacterial peptide, was secreted from PPN-treated LP than from untreated or pullulan-treated LP. Furthermore, antimicrobial activity against Gram-negative Escherichia coli K99 and Gram-positive Listeria monocytogenes by PPN-treated LP was higher than those of untreated or pullulan-treated LP. It is thought that the enhanced antimicrobial properties of the PPN-treated LP are due to intracellular stimulation. Overall, this research provides a new method of producing plantaricin in LP through intracellular stimulation by internalized PPNs.

9.
J Microbiol Biotechnol ; 29(2): 200-208, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691251

RESUMO

Probiotics show low cell viability after oral administration because they have difficulty surviving in the stomach due to low pH and enzymes. For the oral delivery of probiotics, developing a formula that protects the probiotic bacteria from gastric acidity while providing living cells is mandatory. In this study, we developed tablets using a new pH-sensitive phthalyl inulin (PI) to protect probiotics from gastric conditions and investigated the effects of different compression forces on cell survival. We made three different tablets under different compression forces and measured survivability, disintegration time, and kinetics in simulated gastric-intestinal fluid. During tableting, there were no significant differences in probiotic viability among the different compression forces although disintegration time was affected by the compression force. A higher compression force resulted in higher viability in simulated gastric fluid. The swelling degree of the PI tablets in simulated intestinal fluid was higher than that of the tablets in simulated gastric fluid due to the pH sensitivity of the PI. The probiotic viability formulated in the tablets was also higher in acidic gastric conditions than that for probiotics in solution. Rapid release of the probiotics from the tablet occurred in the simulated intestinal fluid due to the pH sensitivity. After 6 months of refrigeration, the viability of the PI probiotics was kept. Overall, this is the first study to show the pH-sensitive properties of PI and one that may be useful for oral delivery of the probiotics.


Assuntos
Inulina/administração & dosagem , Inulina/química , Probióticos/administração & dosagem , Probióticos/química , Administração Oral , Força Compressiva , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Suco Gástrico/química , Concentração de Íons de Hidrogênio , Secreções Intestinais/química , Inulina/farmacocinética , Viabilidade Microbiana , Probióticos/farmacocinética , Comprimidos/administração & dosagem , Comprimidos/química , Comprimidos/farmacocinética
10.
Int J Mol Sci ; 19(11)2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30463211

RESUMO

Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization.


Assuntos
Quitosana/química , Imunização , Agulhas , Animais , Humanos , Imunidade , Pele
11.
Biochem Biophys Res Commun ; 503(1): 285-290, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29890133

RESUMO

Mitochondrial uncoupling protein 1 (UCP1) is responsible for nonshivering thermogenesis in brown adipose tissue (BAT). UCP1 increases the conductance of the inner mitochondrial membrane (IMM) for protons to make BAT mitochondria generate heat rather than ATP. HDAC6 is a cytosolic deacetylase for non-histone substrates to regulate various cellular processes, including mitochondrial quality control and dynamics. Here, we showed that the body temperature of HDAC6 knockout mice is slightly decreased in normal hosing condition. Interestingly, UCP1 was downregulated in BAT of HDAC6 knockout mice, which extensively linked mitochondrial thermogenesis. Mechanistically, we showed that cAMP-PKA signaling plays a key role in HDAC6-dependent UCP1 expression. Notably, the size of brown adipocytes and lipid droplets in HDAC6 knockout BAT is increased. Taken together, our findings suggested that HDAC6 contributes to mitochondrial thermogenesis in BAT by increasing UCP1 expression through cAMP-PKA signaling pathway.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Desacetilase 6 de Histona/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Tecido Adiposo Marrom/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica , Desacetilase 6 de Histona/genética , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transdução de Sinais , Proteína Desacopladora 1/metabolismo
12.
Sci Rep ; 8(1): 5878, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650991

RESUMO

One of the most challenging aspects of probiotics as a replacement for antibiotics is to enhance their antimicrobial activity against pathogens. Given that prebiotics stimulate the growth and/or activity of probiotics, we developed phthalyl inulin nanoparticles (PINs) as prebiotics and observed their effects on the cellular and antimicrobial activities of Pediococcus acidilactici (PA). First, we assessed the internalization of PINs into PA. The internalization of PINs was largely regulated by glucose transporters in PA, and the process was energy-dependent. Once internalized, PINs induced PA to produce substantial amounts of antimicrobial peptide (pediocin), which is effective against both Gram-positive (Salmonella Gallinarum) and Gram-negative (Listeria monocytogenes) pathogens. When treated with small-sized PINs, PA witnessed a nine-fold increase in antimicrobial activity. The rise in pediocin activity in PA treated with PINs was accompanied by enhanced expression of stress response genes (groEL, groES, dnaK) and pediocin biosynthesis genes (pedA, pedD). Although the mechanism is not clear, it appears that the internalization of PINs by PA causes mild stress to activate the PA defense system, leading to increased production of pediocin. Overall, we identified a prebiotic in nanoparticle form for intracellular stimulation of probiotics, demonstrating a new avenue for the biological production of antimicrobial peptides.


Assuntos
Anti-Infecciosos/administração & dosagem , Inulina/química , Nanopartículas/química , Pediocinas/farmacologia , Anti-Infecciosos/química , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inulina/farmacologia , Listeria monocytogenes , Pediocinas/biossíntese , Pediocinas/genética , Pediococcus acidilactici/química , Probióticos/química , Probióticos/farmacologia
13.
Sci Rep ; 8(1): 6012, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662088

RESUMO

The intestinal microbiota affect various physiological traits of host animals such as brain development, obesity, age, and the immune system. In the swine industry, understanding the relationship between intestinal microbiota and growth stage is essential because growth stage is directly related to the feeding system of pigs, thus we studied the intestinal microbiota of 32 healthy pigs across five sows at 10, 21, 63, 93, and 147 d of ages. The intestinal microbiota were altered with growth of pigs and were separated into three distinct clusters. The relative abundance of several phyla and genera were significantly different between growth stages. We observed co-occurrence pattern of the intestinal microbiota at each growth stage. In addition, we predicted the functions of the intestinal microbiota and confirmed that several KEGG pathways were significantly different between growth stages. We also explored the relationship between the intestinal microbiota and innate factors such as the maternal effect and gender. When pigs were young, innate factors affected on construction of intestinal microbiota, however this tendency was disappeared with growth. Our findings broaden the understanding of microbial ecology, and the results will be used as a reference for investigating host-microbe interactions in the swine industry.


Assuntos
Fezes/microbiologia , Microbioma Gastrointestinal , Suínos/crescimento & desenvolvimento , Suínos/microbiologia , Criação de Animais Domésticos , Animais , Feminino , Masculino , Interações Microbianas
14.
J Microbiol Biotechnol ; 28(4): 510-519, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29385662

RESUMO

Synbiotics are a combination of probiotics and prebiotics, which lead to synergistic benefits in host welfare. Probiotics have been used as an alternative to antibiotics. Among the probiotics, Pediococcus acidilactici (PA) has shown excellent antimicrobial activity against Salmonella Gallinarum (SG) as a major poultry pathogen and has improved the production performances of animals. Inulin is widely used as a prebiotic for the improvement of animal health and growth. The main aim of this study is to investigate the effect of the antimicrobial activity of inulin nanoparticles (INs)-internalized PA encapsulated into alginate/chitosan/alginate (ACA) microcapsules (MCs) in future in vivo application. The prepared phthalyl INs (PINs) were characterized by DLS and FE-SEM. The contents of phthal groups in phthalyl inulin were estimated by ¹H-NMR measurement as 25.1 mol.-%. The sizes of the PINs measured by DLS were approximately 203 nm. Internalization into PA was confirmed by confocal microscopy and flow cytometry. Antimicrobial activity of PIN-internalized probiotics encapsulated into ACA MCs was measured by co-culture antimicrobial assays on SG. PIN-internalized probiotics had a higher antimicrobial ability than that of ACA MCs loaded with PA/inulin or PA. Interestingly, when PINs were treated with PA and encapsulated into ACA MCs, as a natural antimicrobial peptide, pediocin was produced much more in the culture medium compared with other groups inulin-loaded ACA MCs and PA-encapsulated into ACA MCs.


Assuntos
Inulina/farmacologia , Nanopartículas/química , Peptídeos/farmacologia , Prebióticos/microbiologia , Probióticos/farmacologia , Alginatos , Animais , Antibacterianos/administração & dosagem , Antibiose , Cápsulas/farmacologia , Quitosana , Técnicas de Cocultura , Combinação de Medicamentos , Ácidos Graxos Voláteis/análise , Ácido Glucurônico , Ácidos Hexurônicos , Inulina/análise , Inulina/química , Inulina/isolamento & purificação , Tamanho da Partícula , Pediocinas/farmacologia , Pediococcus acidilactici/fisiologia , Peptídeos/administração & dosagem , Probióticos/administração & dosagem , Salmonella/efeitos dos fármacos
15.
Molecules ; 23(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370100

RESUMO

Chitosan, which exhibits good biocompatibility, safety, microbial degradation and other excellent performances, has found application in all walks of life. In the field of medicine, usage of chitosan for the delivery of vaccine is favored by a wide range of researchers. However, due to its own natural limitations, its application has been constrained to the beginning of study. In order to improve the applicability for vaccine delivery, researchers have carried out various chemical modifications of chitosan. This review summarizes a variety of modification methods and applications of chitosan and its derivatives in the field of vaccine delivery.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Vacinas/administração & dosagem , Animais , Materiais Biocompatíveis/química , Quitosana/análogos & derivados , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Estrutura Molecular , Polietilenoglicóis/química , Vacinas/química , Vacinas/genética , Vacinas de DNA/administração & dosagem , Vacinas de DNA/química , Vacinas de DNA/genética
16.
Tissue Eng Regen Med ; 15(1): 1-11, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30603530

RESUMO

Several barriers such as gastric pH, enzymatic degradation and rapid transit should be overcome to orally deliver antigens for taking up by epithelial microfold cells in Peyer's patches of small intestine. To solve the above mentioned problems, we designed pH-sensitive and mucoadhesive polymeric microparticles (MPs) prepared by double emulsion technique using cellulose acetate phthalate (CAP) to enhance immune response of foot-and-mouth disease (FMD) virus (FMDV) subunit vaccine. Thiolation of CAP improved mucoadhesive property of CAP to prolong the MPs transit time through the gastrointestinal tract. Thiolated CAP (T-CAP) also slowed down antigen release in acidic pH of stomach but released more antigens in neutral pH of small intestine due to the pH-sensitivity of the T-CAP. Oral immunization of a chimerical multi-epitope recombinant protein as the FMD subunit vaccine via T-CAP MPs effectively delivered the vaccine to Peyer's patches eliciting mucosal IgA response. It will make a step forward into a promising oral subunit vaccine development in livestock industry.

17.
Int J Biol Macromol ; 110: 54-64, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054527

RESUMO

Given that most pathogens enter the body at mucosal surfaces for infection and mucosal immune responses act as the first line of defense against the invading pathogens, mucosal vaccination is the most effective method to prevent infectious diseases. However, the development of mucosal vaccines requires an efficient antigen delivery system which should protect the antigens from physical elimination and enzymatic degradation, target mucosal inductive sites, and appropriately stimulate the mucosal and systemic immunity. Accordingly, polymeric particles have garnered much attention because the physicochemical properties of polymers can be adjusted to resolve the issues associated with mucosal vaccine delivery. Particularly, chitosan-based polymeric carriers are the most promising vehicles for mucosal vaccine delivery because chitosan is biodegradable, biocompatible and mucoadhesive in nature. Similarly, chitosan can be modified with chemical and biological molecules to develop delivery carriers for controlled or targeted therapy. Moreover, they can be converted to various formulations, such as solid, liquid and gel, with a wide range of particle sizes. In this review, we highlight and discuss advances in the development of chitosan-based particulate systems, specifically for the delivery of mucosal vaccines against infections.


Assuntos
Quitosana , Portadores de Fármacos , Imunidade nas Mucosas/efeitos dos fármacos , Vacinação/métodos , Vacinas , Animais , Quitosana/química , Quitosana/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Vacinas/química , Vacinas/uso terapêutico
18.
PLoS One ; 12(10): e0186671, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29059217

RESUMO

After the introduction of a ban on the use of antibiotic growth promoters (AGPs) for livestock, the feeding environment, including the composition of animal intestinal microbiota, has changed rapidly. We hypothesized that the microbial genomes have also been affected by this legal prohibition, and investigated an important member of the swine gut microbiota, Lactobacillus salivarius, with a pan-genomic approach. Here, we isolated 21 L. salivarius strains composed of 6 strains isolated before the AGP prohibition (SBPs) and 15 strains isolated after the AGP prohibition (SAPs) at an interval of a decade, and the draft genomes were generated de novo. Several genomic differences between SBPs and SAPs were identified, although the number and function of antibiotic resistance genes were not different. SBPs showed larger genome size and a higher number of orthologs, as well as lower genetic diversity, than SAPs. SBPs had genes associated with the utilization of L-rhamnose and D-tagatose for energy production. Because these sugars are also used in exopolysaccharide (EPS) synthesis, we tried to identify differences in biofilm formation-associated genes. The genes for the production of EPSs and extracellular proteins were different in terms of amino acid sequences. Indeed, SAPs formed dense biofilm and survived better than SBPs in the swine intestinal environment. These results suggest that SAPs have evolved and adapted to protect themselves from new selection pressure of the swine intestinal microenvironment by forming dense biofilms, adopting a distinct antibiotic resistance strategy. This finding is particularly important to understand the evolutionary changes in host-microbe interaction and provide detailed insight for the development of effective probiotics for livestock.


Assuntos
Intestinos/microbiologia , Ligilactobacillus salivarius/efeitos dos fármacos , Probióticos/farmacologia , Animais , Biofilmes , Resistência Microbiana a Medicamentos , Genoma Bacteriano , Ligilactobacillus salivarius/genética , Suínos
19.
Biochem Biophys Res Commun ; 494(1-2): 51-56, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29054408

RESUMO

The acetylation of p53 is critical in modulating its pro-apoptotic roles. However, its regulatory mechanism and physiological significance are unclear. Here, we show HDAC6 negatively regulates pro-apoptotic acetylation of p53 at lysine residue 120 (K120) in mesenchymal stem cells (MSCs). The loss of HDAC6 expression in MSCs increases K120 acetylation of p53, which is successfully reversed by the wild-type but not by catalytically dead HDAC6. Deletion of HDAC6 induces caspase-dependent apoptosis by promoting transactivation of Bax and suppression of Bcl-2. Moreover, HDAC6 deficiency leads to mitochondrial dysfunction characterized by aberrant reactive oxygen species production and defective oxidative phosphorylation, which is reversed by ectopic expression of wild-type or acetylation mimetic p53. This study demonstrates that HDAC6 is a critical regulator of a pro-apoptotic p53 K120 acetylation and mitochondrial function in MSCs, suggesting that the modulation of HDAC6 activity could be a novel approach to improve MSC- based therapies.


Assuntos
Apoptose/fisiologia , Histona Desacetilases/deficiência , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Apoptose/genética , Desacetilase 6 de Histona , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Lisina/química , Lisina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/química
20.
Asian-Australas J Anim Sci ; 30(11): 1643-1650, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28935851

RESUMO

OBJECTIVE: The control of psychrotrophic bacteria causing milk spoilage and illness due to toxic compounds is an important issue in the dairy industry. In South Korea, Gangwon-do province is one of the coldest terrains in which eighty percent of the area is mountainous regions, and mainly plays an important role in the agriculture and dairy industries. The purposes of this study were to analyze the indigenous microbiota of raw milk in Gangwon-do and accurately investigate a putative microbial group causing deterioration in milk quality. METHODS: We collected raw milk from the bulk tank of 18 dairy farms in the Hoengseong and Pyeongchang regions of Gangwon-do. Milk components were analyzed and the number of viable bacteria was confirmed. The V3 and V4 regions of 16S rRNA gene were amplified and sequenced on an Illumina Miseq platform. Sequences were then assigned to operational taxonomic units, followed by the selection of representative sequences using the QIIME software package. RESULTS: The milk samples from Pyeongchang were higher in fat, protein, lactose, total solid, and solid non-fat, and bacterial cell counts were observed only for the Hoengseong samples. The phylum Proteobacteria was detected most frequently in both the Hoengseong and Pyeongchang samples, followed by the phyla Firmicutes and Actinobacteria. Notably, Corynebacterium, Pediococcus, Macrococcus, and Acinetobacter were significantly different from two regions. CONCLUSION: Although the predominant phylum in raw milk is same, the abundances of major genera in milk samples were different between Hoengseong and Pyeongchang. We assumed that these differences are caused by regional dissimilar farming environments such as soil, forage, and dairy farming equipment so that the quality of milk raw milk from Pyeongchang is higher than that of Hoengseong. These results could provide the crucial information for identifying the microbiota in raw milk of South Korea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...