Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 307(4): 1613-1633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38282465

RESUMO

Gomphodonts form a Triassic radiation of small to medium-bodied (<0.5-2.5 m in length) quadrupedal cynodonts characterized by labiolingually expanded gomphodont postcanines. They were the dominant cynodont group in Middle and Late Triassic ecosystems from the Southern Hemisphere and the first predominantly herbivorous cynodonts to evolve. Gomphodonts were also the first therapsids to develop hypsodonty and a dentition with complex occlusal patterns, and their highly diagnostic upper and lower postcanines show many different morphologies. Here, we explored dental complexity in gomphodont cynodonts through time using geographic information system analysis and orientation patch count applied on 3D crown surfaces of upper and lower gomphodont postcanines belonging to 32 gomphodont taxa. This study reveals that the peak in postcanine complexity was reached early in the evolution of gomphodonts with the emergence in the Early Triassic of omnivorous or insectivorous forms with postcanines made of well-separated cusps and cingular cuspules. Traversodontids evolved simpler postcanines via coalescence of cusps into crests and the development of large occlusal basins, and the Middle Triassic radiation of traversodontids led to a sharp decrease in mean postcanine complexity. Simplification of the postcanines in traversodontids is interpreted as being related to a gradual increase in the consumption of plant material. Interestingly, the trend of insectivory/omnivory high postcanine complexity and herbivory low dental complexity in gomphodonts is opposite to the trend of dental complexity reported in some extant mammals, with omnivorous having low dental complexity and herbivorous higher. Postcanine complexity remained relatively stable throughout the evolution of traversodontids and only slightly diminished in the Late Triassic due to the presence of minute forms with particularly simple postcanines in the Rhaetian. The major phylogenetic diversity and taxonomic richness of Gomphodontia are represented in two periods of time: at the end of the Anisian, an age in which the postcanine complexity is simplifying, and at the early Carnian when the postcanine complexity in traversodontids, the only Gomphodontia represented, is stable.


Assuntos
Ecossistema , Dente , Animais , Filogenia , Fósseis , Mamíferos , Evolução Biológica
2.
Curr Biol ; 33(19): 4261-4268.e3, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37714148

RESUMO

Crocodilians grow slowly and have low metabolic rates similar to other living reptiles, but palaeohistology indicates that they evolved from an ancestor with higher growth rates.1,2,3,4,5 It remains unclear when slow growth appeared in the clade due to the sparse data on key divergences among early Mesozoic members of their stem lineage. We present new osteohistological data from a broad sample of early crocodylomorphs, evaluated in a phylogenetic context alongside other pseudosuchians. We find that the transition to slow-growing bone types during mid-late ontogeny occurred around the origin of Crocodylomorpha during the Late Triassic. Earlier-diverging pseudosuchians had high maximum growth rates, as indicated by the presence of woven bone during middle and (sometimes) late ontogeny.6,7,8,9 Large-bodied pseudosuchians in particular exhibit some of the fastest-growing bone types, giving evidence for prolonged, rapid growth. By contrast, early-branching crocodylomorphs, including a new large-bodied taxon, had slow maximum rates of bone deposition, as evidenced by the presence of predominantly parallel-fibered or lamellar bone tissue during middle-late ontogeny. Late Triassic crocodylomorphs show skeletal anatomy consistent with "active" terrestrial habits,10,11,12 and their slow growth rates reject hypotheses linking this transition with sedentary, semiaquatic lifestyles or sprawling posture. Faster-growing pseudosuchian lineages go extinct in the Triassic, whereas slow-growing crocodylomorphs do not. This contrasts with the Jurassic radiation of fast-growing dinosaurs on the bird-stem lineage,13 suggesting that the End-Triassic mass extinction initiated a divergent distribution of growth strategies that persist in present-day archosaurs.


Assuntos
Jacarés e Crocodilos , Dinossauros , Animais , Filogenia , Jacarés e Crocodilos/anatomia & histologia , Fósseis , Dinossauros/anatomia & histologia , Extinção Biológica , Evolução Biológica
3.
R Soc Open Sci ; 10(6): 221565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325591

RESUMO

The earliest sauropodomorphs were small omnivores (less than 10 kg) that first appeared in the Carnian. By the Hettangian, early branching sauropodomorphs (EBSMs) were globally distributed, had variable postures, and some attained large body masses (greater than 10 tonnes). Small-bodied EBSMs like Massospondylus carinatus (less than 550 kg) persist at least until the Pliensbachian at nearly all dinosaur-bearing localities worldwide but are comparatively low in alpha diversity. One potential reason for this is competition with other similarly sized contemporary amniotes, including Triassic gomphodont cynodonts, Jurassic early branching ornithischians, herbivorous theropods and potentially early crocodylomorphs. Today's herbivorous mammals show a range of body size classes (less than 10 g to 7 tonnes), with multiple species of small herbivorous mammals (less than 100 kg) frequently co-occurring. Comparatively, our understanding of the phylogenetic distribution of body mass in Early Jurassic strata, and its explanatory power for the lower thresholds of body mass in EBSMs, needs more data. We osteohistologically sectioned a small humerus, BP/1/4732, from the upper Elliot Formation of South Africa. Its comparative morphology and osteohistology show that it represents a skeletally mature individual of a new sauropodomorph taxon with a body mass of approx. 75.35 kg. This makes it one of the smallest known sauropodomorph taxa, and the smallest ever reported from a Jurassic stratum.

4.
PeerJ ; 10: e14355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545384

RESUMO

The Burgersdorp Formation of South Africa is a richly fossiliferous rock sequence at the top of the Permian-Triassic Beaufort Group and is known for its abundance of Early-Middle Triassic vertebrate remains, particularly cynodonts. Fossils from the Burgersdorp Formation are referred biostratigraphically to the Cynognathus Assemblage Zone (CAZ), which is further divided into three subzones: Langbergia-Garjainia, Trirachodon-Kannemeyeria, and Cricodon-Ufudocyclops. Each subzone is characterised by the presence of a distinct species of trirachodontid, a group of gomphodont cynodonts found relatively abundantly throughout the CAZ, with the lower two subzones characterised by the medium-sized trirachodontids Langbergia and Trirachodon. The uppermost part of the formation, the Cricodon-Ufudocyclops subzone, yields trirachodontids of larger size. The majority of these trirachodontid specimens have previously been referred to Cricodon metabolus, a taxon also known from the Manda Beds of Tanzania and the Ntawere Formation of Zambia. Here we identify one of the specimens (BP/1/5538) previously referred to Cricodon as a new taxon, Guttigomphus avilionis. Guttigomphus can be distinguished from other gomphodont cynodonts by features of the upper postcanine teeth, such as an asymmetric crown in occlusal view (crown narrower along the lingual margin than the labial). Our phylogenetic analysis recovers Guttigomphus as a basal member of Trirachodontidae, outside of the clade including Cricodon, Langbergia and Trirachodon.


Assuntos
Fósseis , Dente , Animais , Filogenia , África do Sul , Vertebrados
5.
Nat Commun ; 13(1): 5807, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220806

RESUMO

The labyrinth of the vertebrate inner ear is a sensory system that governs the perception of head rotations. Central hypotheses predict that labyrinth shape and size are related to ecological adaptations, but this is under debate and has rarely been tested outside of mammals. We analyze the evolution of labyrinth morphology and its ecological drivers in living and fossil turtles, an understudied group that underwent multiple locomotory transitions during 230 million years of evolution. We show that turtles have unexpectedly large labyrinths that evolved during the origin of aquatic habits. Turtle labyrinths are relatively larger than those of mammals, and comparable to many birds, undermining the hypothesis that labyrinth size correlates directly with agility across vertebrates. We also find that labyrinth shape variation does not correlate with ecology in turtles, undermining the widespread expectation that reptilian labyrinth shapes convey behavioral signal, and demonstrating the importance of understudied groups, like turtles.


Assuntos
Orelha Interna , Tartarugas , Animais , Aves , Fósseis , Mamíferos , Filogenia , Tartarugas/anatomia & histologia
6.
Curr Biol ; 32(20): 4501-4507.e2, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36084648

RESUMO

Sauropod dinosaurs include the largest land animals to have walked the earth, mostly weighing 10-70 tons (e.g., Sander et al.1 and Carballido et al.2). Osteohistology suggests that derived physiological traits evolved near the origin of sauropod gigantism, including both rapid and uninterrupted growth from juvenile to adult with little developmental plasticity.1,3,4 This differs from the slower, seasonally interrupted growth of their direct ancestors, as evident in most non-sauropodan sauropodomorphs, which also show developmental plasticity in some groups. Accelerated but seasonally interrupted growth is present in Lessemsauridae, the sister clade to Sauropoda, which also attained giant adult body sizes (>10 tons).5 These observations suggest a correlation between giant size and accelerated growth. However, testing this evolutionary connection has been limited by the incomplete understanding of the growth patterns in some of the closest non-giant relatives of sauropods. We present the osteohistology of two such taxa, Aardonyx celestae and Sefapanosaurus zatronensis. Both exhibit highly vascularized woven-parallel complexes, with fibrolamellar complexes during early to mid-ontogeny, containing regular growth marks. These observations provide strong evidence for rapid but seasonally interrupted growth with limited developmental plasticity (indicated by the regular spacing of growth marks). Combined with our review of early branching sauropodomorph osteohistology, these results show that highly accelerated growth rates originated among smaller, non-sauropodan sauropodomorphs weighing 1 to 2 tons but preceded the origins of giant size (>10 tons). Therefore, the capacity for rapid bone tissue formation, a derived aspect of rapid growth seen in sauropods, did not evolve specifically to enable giant body sizes but may have been a prerequisite for them.


Assuntos
Dinossauros , Gigantismo , Animais , Fósseis , Evolução Biológica , Filogenia , Dinossauros/anatomia & histologia
7.
PeerJ ; 10: e13918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172498

RESUMO

Massospondylus carinatus Owen, 1854 is an iconic basal sauropodomorph dinosaur from the Early Jurassic of southern Africa. Over 200 specimens have been referred to this taxon, spanning the entire ontogenetic series from embryo to adult. Consequently, it provides an ideal sample for investigating dinosaur developmental biology, including growth patterns and growth rates, through osteohistological analysis. Massospondylus carinatus was the first early-branching sauropodomorph dinosaur for which a femoral growth series was sampled. Since then, growth series of other non-avian dinosaur taxa have shown that growth plasticity, interelemental variation, and ontogenetic locomotory shifts can complicate our understanding of growth curves and patterns. To investigate these questions further, it is necessary to sample multiple skeletal elements from multiple individuals across a large range of sizes, something that is often hindered by the incompleteness of the fossil record. Here, we conducted a broad, multielement osteohistological study of long bones (excluding metapodials) from 27 specimens of Massospondylus carinatus that span its ontogenetic series. Our study reveals substantial variations in growth history. A cyclical woven-parallel complex is the predominant bone tissue pattern during early and mid-ontogeny, which transitions to slower forming parallel-fibred bone during very late ontogeny. The bone tissue is interrupted by irregularly spaced cyclical growth marks (CGMs) including lines of arrested growth indicating temporary cessations in growth. These CGMs show that the previously recorded femoral growth plasticity is also visible in other long bones, with a poor correlation between body size (measured by midshaft circumference) and CGM numbers. Furthermore, we found that the growth trajectory for an individual can vary depending on which limb element is studied. This makes the establishment of an accurate growth curve and determination of the onset of reproductive maturity difficult for this taxon. Finally, we found no evidence of differential growth rates in forelimb vs hindlimb samples from the same individual, providing further evidence falsifying hypothesised ontogenetic postural shifts in Massospondylus carinatus.


Assuntos
Osso e Ossos , Locomoção , Animais , Fósseis , Fêmur/anatomia & histologia , Tamanho Corporal
8.
J Anat ; 241(6): 1441-1458, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168715

RESUMO

The rapid radiation and dispersal of crown reptiles following the end-Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo-Triassic ecology. Here, we describe an Early Triassic specimen of the diapsid Palacrodon from the Fremouw Formation of Antarctica. While Palacrodon is known throughout the Triassic and exhibits a cosmopolitan geographic range, little is known of its evolutionary relationships. We recover Palacrodon outside of crown reptiles (Sauria) but more crownward than Youngina capensis and other late Permian diapsids. Furthermore, Palacrodon possesses anatomical features that add clarity to the evolution of the stapes within the reptilian lineage, as well as incipient adaptations for arboreality and herbivory during the earliest phases of the Permo-Triassic recovery.


Assuntos
Evolução Biológica , Fósseis , Animais , Regiões Antárticas , Filogenia , Extinção Biológica , Répteis/anatomia & histologia
9.
Anat Rec (Hoboken) ; 305(10): 2766-2790, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35595547

RESUMO

Living crocodylomorphs have an ossified secondary palate with a posteriorly positioned choana that enables their semi-aquatic, predatory ecology. In contrast, the earliest branching members of Crocodylomorpha have an open palate with anteriorly positioned choanae. The evolution of an ossified secondary palate and a posteriorly positioned choana features strongly in hypotheses of broad-scale phylogenetic relationships within Crocodylomorpha. Renewed investigations into palatal morphology among extinct members of the clade show surprising variability in the anatomy of the palate, with at least one and potentially a second independent occurrence of "eusuchian-type" palate outside of Eusuchia. Understanding the trajectory of crocodylomorph palatal evolution is, therefore, a key to inferring crocodylomorph interrelationships and ecomorphology. To document early-branching crocodylomorph palatal anatomy, we developed an anatomical comparative dataset using computed tomography scan data and literature, comprising 12 early-branching crocodylomorph taxa. To understand discrete phenotypic changes in palatal structure, we compiled a phylogenetically broadly sampled character-taxon matrix from the existing literature, and revised its palatal characters, adding 10 new palatal characters. Our comparative anatomical investigations allow us to propose an adapted hypothesis for the closure of the palate and the posterior migration of the choana. Our phylogenetic findings corroborate previous research showing that non-crocodyliform crocodylomorphs ("sphenosuchians") are paraphyletic, with the exclusion of the clade Hallopodidae. Non-mesoeucrocodylian crocodyliforms ("protosuchians") are paraphyletic, but form three monophyletic clades: Notochampsoidea, Shartegosuchoidea, and Gobiosuchidae. We find a potential association between secondary palate development and dietary shifts, particularly with regard to hypothesized origins of herbivory.


Assuntos
Fósseis , Palato , Filogenia
10.
Anat Rec (Hoboken) ; 305(10): 2583-2603, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34398508

RESUMO

Thalattosuchians were a predominately marine clade of Mesozoic crocodylomorphs, including semi-aquatic teleosauroid and obligately pelagic metriorhynchid subclades. Recent advances in our understanding of thalattosuchian endocranial anatomy have revealed new details of the evolutionary transition from terrestrial to marine to pelagic taxa. Paranasal sinuses, however, have received little attention. Herein, we investigate the evolution of the paranasal sinus system and part of the upper respiratory system (nasopharyngeal ducts) in Thalattosuchia, by reconstructing the nasal and paranasal anatomy in CT scans of seven thalattosuchian skulls: one teleosauroid, two basal metriorhynchoids and four metriorhynchids. Our outgroups were: three extant crocodylian species (including adult and subadult skulls) and the basal crocodyliform Protosuchus. We found thalattosuchians exhibit exceptionally reduced paranasal sinus systems, solely comprising the antorbital sinus, as has been previously proposed. The semi-aquatic basal thalattosuchians Palgiopthalmosuchus gracilirostris and Pelagosaurus typus both have an antorbital sinus partially located medial to a reduced external antorbital fenestra and broadly communicating with the dorsal alveolar canal. In pelagic metriorhynchids, the antorbital cavity is more extensive than in basal taxa and possibly had an active function associated with a hypothesized accessory suborbital diverticulum, but our reconstructions are insufficient to confirm or reject the presence of such a diverticulum. The nasopharyngeal ducts of metriorhynchids are dorsoventrally enlarged, possibly enabling stronger ventilation. The sequence of acquisition of craniofacial adaptations show a mosaic pattern and appears to predate many skeletal adaptations, suggesting these changes occurred early in the thalattosuchian marine transition.


Assuntos
Jacarés e Crocodilos , Divertículo , Seios Paranasais , Animais , Evolução Biológica , Crânio/anatomia & histologia
12.
Proc Biol Sci ; 288(1957): 20211084, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428965

RESUMO

Lepidosaurs include lizards, snakes, amphisbaenians and the tuatara, comprising a highly speciose evolutionary radiation with widely varying anatomical traits. Their stem-lineage originated by the late middle Permian 259 million years ago, but its early fossil record is poorly documented, obscuring the origins of key anatomical and functional traits of the group. Paliguana whitei, from the Early Triassic of South Africa, is an enigmatic fossil species with the potential to provide information on this. However, its anatomy and phylogenetic affinities remain highly uncertain, and have been debated since its discovery more than 100 years ago. We present microtomographic three-dimensional imaging of the cranial anatomy of P. whitei that clarifies these uncertainties, providing strong evidence for lepidosauromorph affinities based on the structure of the temporal region and the implantation of marginal dentition. Phylogenetic analysis including these new data recovers Paliguana as the earliest known stem-lepidosaur, within a long-lived group of early diverging lepidosauromorphs that persisted to at least the Middle Jurassic. Our results provide insights into cranial evolution on the lepidosaur stem-lineage, confirming that characteristics of pleurodont dental implantation evolved early on the lepidosaur stem-lineage. By contrast, key functional traits related to hearing (quadrate conch) and feeding (streptostyly) evolved later in the lepidosaur crown-group.


Assuntos
Evolução Biológica , Lagartos , Animais , Fósseis , Lagartos/anatomia & histologia , Filogenia , Serpentes/anatomia & histologia
13.
Curr Biol ; 31(16): 3687-3693.e5, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34233160

RESUMO

Sustained miniaturization, here defined as a drop in body size of at least two orders of magnitude from ancestors to descendants, is a widespread and important phenomenon in animals,1-3 but among dinosaurs, miniaturization occurred only rarely, once in the lineage leading to birds and once in the Alvarezsauroidea,1,3-5 one of the most bizarre theropod groups.1,5-7 Miniaturization and powered flight are intimately linked in avialan theropods,3,5,6,8-11 but the causes and patterns of body size reduction are less clear in the non-volant Alvarezsauroidea.1,5,6,12,13 Here, we present results from analyses on a comprehensive dataset, which not only includes new data from early-branching alvarezsauroids but also considers the ontogenetic effect based on histological data. Our analyses show that alvarezsauroid body mass underwent rapid miniaturization from around 110 to 85 mya and that there was a phylogenetic radiation of small-sized alvarezsauroids in the Late Cretaceous. Our analyses also indicate that growth strategies were highly variable among alvarezsauroids, with significant differences among extremely small taxa. The suggested alvarezsauroid miniaturization and associated phylogenetic radiation are coincident with the emergence of ants and termites, and combining previous functional morphological data, our study suggests that alvarezsauroid miniaturization might have been driven by ecological changes during the Cretaceous Terrestrial Revolution, more specifically by a shift to the myrmecophagous ecological niche.


Assuntos
Evolução Biológica , Dinossauros , Fósseis , Animais , Dinossauros/anatomia & histologia , Filogenia
14.
Elife ; 102021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34225841

RESUMO

Ornithischian dinosaurs were ecologically prominent herbivores of the Mesozoic Era that achieved a global distribution by the onset of the Cretaceous. The ornithischian body plan is aberrant relative to other ornithodiran clades, and crucial details of their early evolution remain obscure. We present a new, fully articulated skeleton of the early branching ornithischian Heterodontosaurus tucki. Phase-contrast enhanced synchrotron data of this new specimen reveal a suite of novel postcranial features unknown in any other ornithischian, with implications for the early evolution of the group. These features include a large, anteriorly projecting sternum; bizarre, paddle-shaped sternal ribs; and a full gastral basket - the first recovered in Ornithischia. These unusual anatomical traits provide key information on the evolution of the ornithischian body plan and suggest functional shifts in the ventilatory apparatus occurred close to the base of the clade. We complement these anatomical data with a quantitative analysis of ornithischian pelvic architecture, which allows us to make a specific, stepwise hypothesis for their ventilatory evolution.


The fossilised skeletons of long extinct dinosaurs are more than just stones. By comparing these remains to their living relatives such as birds and crocodiles, palaeontologists can reveal how dinosaurs grew, moved, ate and socialised. Previous research indicates that dinosaurs were likely warm-blooded and also more active than modern reptiles. This means they would have required breathing mechanisms capable of supplying enough oxygen to allow these elevated activity levels. So far, much of our insight into dinosaur breathing biology has been biased towards dinosaur species more closely related to modern birds, such as Tyrannosaurus rex, as well as the long-necked sauropods. The group of herbivorous dinosaurs known as ornithischians, which include animals with head ornamentation, spikes and heavy body armour, like that found in Triceratops and Stegosaurus, have often been overlooked. As a result, there are still significant gaps in ornithischian biology, especially in understanding how they breathed. Radermacher et al. used high-powered X-rays to study a new specimen of the most primitive ornithischian dinosaur, Heterodontosaurus tucki, and discovered that this South African dinosaur has bones researchers did not know existed in this species. These include bones that are part of the breathing system of extant reptiles and birds, including toothpick-shaped bones called gastralia, paired sternal bones and sternal ribs shaped like tennis rackets. Together, these new pieces of anatomy form a complicated chest skeleton with a large range of motion that would have allowed the body to expand during breathing cycles. But this increased motion of the chest was only possible in more primitive ornithischians. More advanced species lost much of the anatomy that made this motion possible. Radermacher et al. show that while the chest was simpler in advanced species, their pelvis was more specialised and likely played a role in breathing as it does in modern crocodiles. This new discovery could inform the work of biologists who study the respiratory diversity of both living and extinct species. Differences in breathing strategies might be one of the underlying reasons that some lineages of animals go extinct. It could explain why some species do better than others under stressful conditions, like when the climate is warmer or has less oxygen.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Ventilação Pulmonar , Animais , Dinossauros/fisiologia
15.
Science ; 372(6542): 610-613, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33958472

RESUMO

Owls and nightbirds are nocturnal hunters of active prey that combine visual and hearing adaptations to overcome limits on sensory performance in low light. Such sensory innovations are unknown in nonavialan theropod dinosaurs and are poorly characterized on the line that leads to birds. We investigate morphofunctional proxies of vision and hearing in living and extinct theropods and demonstrate deep evolutionary divergences of sensory modalities. Nocturnal predation evolved early in the nonavialan lineage Alvarezsauroidea, signaled by extreme low-light vision and increases in hearing sensitivity. The Late Cretaceous alvarezsauroid Shuvuuia deserti had even further specialized hearing acuity, rivaling that of today's barn owl. This combination of sensory adaptations evolved independently in dinosaurs long before the modern bird radiation and provides a notable example of convergence between dinosaurs and mammals.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Ducto Coclear/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Audição , Visão Noturna , Animais , Dinossauros/líquido cefalorraquidiano , Filogenia , Estrigiformes/anatomia & histologia , Estrigiformes/fisiologia
16.
Biol Lett ; 17(5): 20200843, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33975484

RESUMO

There is growing evidence of developmental plasticity in early branching dinosaurs and their outgroups. This is reflected in disparate patterns of morphological and histological change during ontogeny. In fossils, only the osteohistological assessment of annual lines of arrested growth (LAGs) can reveal the pace of skeletal growth. Some later branching non-bird dinosaur species appear to have followed an asymptotic growth pattern, with declining growth rates at increasing ontogenetic ages. By contrast, the early branching sauropodomorph Plateosaurus trossingensis appears to have had plastic growth, suggesting that this was the plesiomorphic condition for dinosaurs. The South African sauropodomorph Massospondylus carinatus is an ideal taxon in which to test this because it is known from a comprehensive ontogenetic series, it has recently been stratigraphically and taxonomically revised, and it lived at a time of ecosystem upheaval following the end-Triassic extinction. Here, we report on the results of a femoral osteohistological study of M. carinatus comprising 20 individuals ranging from embryo to skeletally mature. We find major variability in the spacing of the LAGs and infer disparate body masses for M. carinatus individuals at given ontogenetic ages, contradicting previous studies. These findings are consistent with a high degree of growth plasticity in M. carinatus.


Assuntos
Evolução Biológica , Dinossauros , Animais , Dinossauros/anatomia & histologia , Ecossistema , Fósseis , Filogenia
17.
Proc Natl Acad Sci U S A ; 117(19): 10422-10428, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32312812

RESUMO

Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.


Assuntos
Adaptação Biológica/fisiologia , Orelha Interna/anatomia & histologia , Orelha Interna/fisiologia , Adaptação Biológica/genética , Jacarés e Crocodilos/anatomia & histologia , Animais , Evolução Biológica , Cetáceos/anatomia & histologia , Ecossistema , Extinção Biológica , Substância Cinzenta , Filogenia , Canais Semicirculares , Natação , Tomografia Computadorizada por Raios X/métodos , Vestíbulo do Labirinto/anatomia & histologia , Água
18.
Sci Rep ; 10(1): 4224, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273522

RESUMO

Dinosaur embryos are among the rarest of fossils, yet they provide a unique window into the palaeobiology of these animals. Estimating the developmental stage of dinosaur embryos is hindered by the lack of a quantitative method for age determination, by the scarcity of material, and by the difficulty in visualizing that material. Here we present the results of a broad inquiry, using 3D reconstructions from X-ray computed tomography data, into cranial ossification sequences in extant saurian taxa and in well-preserved embryos of the early branching sauropodomorph dinosaur Massospondylus carinatus. Our findings support deep-time conservation of cranial ossification sequences in saurians including dinosaurs, allowing us to develop a new method for estimating the relative developmental percentage of embryos from that clade. We also observe null-generation teeth in the Massospondylus carinatus embryos which get resorbed or shed before hatching, similar to those of geckos. These lines of evidence allow us to confidently estimate that the Massospondylus carinatus embryos are only approximately 60% through their incubation period, much younger than previously hypothesized. The overall consistency of our results with those of living saurians indicates that they can be generalized to other extinct members of that lineage, and therefore our method provides an independent means of assessing the developmental stage of extinct, in-ovo saurians.


Assuntos
Evolução Biológica , Dinossauros/embriologia , Dinossauros/fisiologia , Osteogênese , Óvulo/fisiologia , Crânio/embriologia , Crânio/fisiologia , Animais , Dinossauros/anatomia & histologia , Fósseis , Filogenia
19.
PeerJ ; 7: e7240, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31403001

RESUMO

Our knowledge of Early Jurassic palaeobiodiversity in the upper Elliot Formation of South Africa has increased markedly in recent years with the discovery of new fossils, re-assessments of previously collected material and a better understanding of Stormberg Group stratigraphy. Here, Ngwevu intloko, a new genus of upper Elliot basal sauropodomorph is named on the basis of a complete skull and partial skeleton (BP/1/4779) previously assigned to Massospondylus carinatus. It can be distinguished from all other basal sauropodomorphs by a combination of 16 cranial and six postcranial characters. The new species is compared to a small ontogenetic series of M. carinatus as well as to a range of closely related taxa. Taphonomic deformation, sexual dimorphism and ontogeny are rejected as possible explanations for the morphological differences present between BP/1/4779 and other taxa. Osteohistological examination reveals that BP/1/4779 had nearly reached adult size at the time of its death at a minimum age of 10 years.

20.
PeerJ ; 7: e6752, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223521

RESUMO

Gomphodont cynodonts were close relatives of mammals and one of the Mesozoic lineages of cynodont therapsids that became extinct at the end of the Triassic. Gomphodonts were omnivorous to herbivorous animals characterized by labiolingually expanded postcanines, which allowed tooth-to-tooth occlusion. The morphology of the upper and lower postcanines presents important means of distinguishing among major lineages within Gomphodontia, that is, Diademodontidae, Trirachodontidae, and Traversodontidae, but the dentition of most Diademodontidae and Trirachodontidae remain poorly documented. Here, we present a comprehensive description of the dentition of each diademodontid and trirachodontid species, as well as detailed illustrations of each dental unit, after firsthand examination of material and 3D reconstructions of postcanine teeth. Based on dental morphology, Trirachodon berryi and "Trirachodon kannemeyeri," considered as separate taxa by some authors are here interpreted as representing different ontogenetic stages of the same species. Likewise, Sinognathus and Beishanodon, thought to belong to non-cynognathian cynodonts and traversodontids by some authors, are referred to Trirachodontidae and Gomphodontia based on dental characters, respectively. Finally, we propose a standardized list of terms and abbreviations for incisors, canines, and postcanines anatomical entities, with the goal of facilitating future descriptions and communication between researchers studying the gomphodont dentition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...