Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Sci Total Environ ; 923: 171343, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438048

RESUMO

The growing focus on sustainable agriculture and optimal resource utilization has spurred investigations into lignocellulosic biomass as a potential source for producing environmentally friendly fertilizers. This paper reviews recent advancements in the production and application of innovative fertilizers derived from lignocellulose. It highlights potential in enhancing agricultural productivity and reducing environmental impacts such as carbon footprint and water pollution. The paper outlines various methods for conversion, highlighting the unique advantages of chemical, enzymatic, and microbiological processes, for converting lignocellulosic biomass into nutrient-rich fertilizers. The study compares the efficacy of lignocellulosic fertilizers to traditional fertilizers in promoting crop growth, enhancing soil health, and reducing nutrient losses. The results demonstrate the potential of lignocellulosic biomass-derived fertilizers in promoting resource efficiency and sustainable agriculture. While this research significantly contributes to the existing body of knowledge, further studies on long-term impacts and scalability are recommended for the development of innovative and sustainable agricultural practices.


Assuntos
Agricultura , Fertilizantes , Lignina , Biomassa , Fertilizantes/análise , Agricultura/métodos , Solo
2.
Environ Sci Pollut Res Int ; 31(12): 17822-17834, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253836

RESUMO

Climate change, soil erosion, air and water pollution, or problems related to waste management are just some of the many problems in the modern world. Comprehensive solutions are sought to reduce the effects of progressive environmental degradation according to the assumptions of the concept of sustainable development. The paper presents a technological concept that may be a response to these problems. The presented solution assumes full utilization of slaughterhouse waste with the simultaneous recovery of nutrients and the production of functional fertilizing products with designed properties. Four liquid fertilizer formulations with the following composition were prepared: N - 2.30-3.64%, P2O5 - 2.18-9.66%, and K2O - 0.11-4.49%. The manufactured products were characterized by a high sulfur content and the addition of microelements. The tests carried out on plants confirmed their effectiveness similar to commercial mineral fertilizers. An increase in green matter yield of peas by 5 t/ha and maize by 2 t/ha was observed. The lack of microbiological risk associated with their use has been proven. Good efficiency with a simultaneous reduction in production costs resulting from the use of waste materials, as well as limiting the negative impact of poultry farms on the environment, make this solution an attractive alternative to mineral fertilizers, in line with the assumptions of the circular economy.


Assuntos
Matadouros , Fertilizantes , Animais , Aves Domésticas , Minerais , Esgotos , Solo , Agricultura
3.
Environ Res ; 245: 117953, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38128599

RESUMO

This study explores the integration of fertilizer informatics into the circular economy, with a focus on enhancing nutrient recovery from anaerobic digestate. It utilizes advanced algorithms and data analytics to develop new nutrient management strategies essential for sustainable agriculture. This research provides a detailed assessment of current nutrient recovery technologies, evaluating their environmental impact, cost efficiency, and adaptability. Our findings highlight the importance of merging circular economy principles with fertilizer informatics, showcasing the potential for transforming waste into environmentally friendly fertilizers. This approach has significant implications for improving agricultural practices towards sustainability. The methodologies and insights presented are relevant for ongoing research in environmental stewardship and sustainable resource management. This study describes practical solutions and new perspectives, making it a valuable reference for future research.


Assuntos
Agricultura , Fertilizantes , Fertilizantes/análise , Anaerobiose , Agricultura/métodos , Meio Ambiente , Nutrientes
4.
Artigo em Inglês | MEDLINE | ID: mdl-38049688

RESUMO

This study aims to explore the development of sustainable fertilizers from waste materials of a biogas plant and a brewery. These wastes, rich in organic carbon and nitrogen, were processed with sulfuric(VI) and phosphoric(V) acid mixture, facilitating the production of free amino acids and achieving waste sanitization. This treatment produced by-products, which extended the range of possible applications. The highest concentration of free amino acids (360 mg/l) was achieved through hydrolyzing with a 40% concentration medium over 24 h. In this case, the maximum levels were recorded for beta-alanine (69.3 mg/l), glycine (46.8 mg/l), isoleucine (43.5 mg/l), proline (36.2 mg/l), and valine (31.5 mg/l). The study presents two fertilizer technologies, with and without micronutrients, that satisfy European Parliament Regulation 2019/1009 (Ntot > 2%, Norg > 0.5%, Corg > 3%). Bioavailability of nutrients in the formulations ranged from 60 to 100%. The efficacies of these fertilizers were evaluated in 30-day pot trials with various plant species, with both single application and fertigation tested. Multielement analysis confirmed high nutrient transfer in the soil-plant system, and the inclusion of micronutrients led to biofortification of plant biomass in Cu (48.3 ± 7.2 mg/kg), Mn (249 ± 37 mg/kg), Zn (164 ± 25 mg/kg), and Fe (211 ± 32 mg/kg). These sustainable fertilizers present an alternative to traditional, non-renewable fertilizers and offer promising solutions for precision agriculture and environmentally conscious production.

5.
Medicina (Kaunas) ; 59(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37629649

RESUMO

Introduction: Tissue conditioners have been widely used in various clinical applications in dentistry, such as treating inflamed alveolar ridges, temporarily relining partial and complete dentures, and the acquisition of functional impressions for denture fabrication. This study aimed to investigate the mechanical properties of the most prevalent tissue conditioner materials on the market, including Tissue Conditioners (TC), Visco Gel (VG), and FITT (F). Materials and Methods: The three tissue conditioners, TC, VG, and F, were assessed based on the parameters mentioned above. The following tests were performed based on the ISO 10139-1 and ISO 10139-2 requirements: Shore A hardness, denture plate adhesion, sorption, water solubility, and contraction after 1 and 3 days in water. Additional tests are described in the literature, such as ethanol content and gelling time. The tests were carried out by storing the materials in water at 37 °C for 7 days. Results: The gel times of all tested materials exceeded 5 min (TC = 300 [s], VG = 350 [s]). In vitro, phthalate-free materials exhibited higher dissolution in water after 14 days (VG = -260.78 ± 11.31 µg/mm2) compared to F (-76.12 ± 7.11 µg/mm2) and experienced faster hardening when stored in distilled water (F = 33.4 ± 0.30 Sh. A, VG = 59.2 ± 0.60 Sh. A). They also showed greater contractions. The connection of all materials to the prosthesis plate was consistent at 0.11 MPa. The highest counterbalance after 3 days was observed in TC = 3.53 ± 1.12%. Conclusions: Materials containing plasticizers that are not phthalates have worse mechanical properties than products containing these substances. Since phthalates are not allowed to be used indefinitely in medical devices, additional research is necessary, especially in vivo, to develop safe materials with superior functional properties to newer-generation alternatives. In vitro results often do not agree fully with those of in vivo outcomes.


Assuntos
Placas Ósseas , Metilmetacrilatos , Humanos , Água
6.
Environ Sci Pollut Res Int ; 30(39): 90500-90521, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37477813

RESUMO

The article describes new strategies for the remediation of soils contaminated with organic and inorganic pollutants. The aim of this study is to investigate the synergistic effects of combining plant-microorganism-functional materials for a more effective reduction of soil contamination with toxic chemicals. The innovative triad involves functional materials as a habitat for microorganisms, which helps to control the release of pollutants into the soil solution from the adsorbed form. This, in turn, reduces the toxic effect on microorganisms and plants. Microorganisms play a complex role, consisting of partial biodegradation of pollutants, stimulation of plant growth, and support for nutrient supply. Plants synthesize root exudates that facilitate microorganisms in biodegrading organic pollutants and stimulate their growth. The plant takes up pollutants through the root system, which can be further supported by endophytic microorganisms. The cooperation of the three players produces a synergistic effect that enhances the effectiveness of rhizodegradation supported by functional materials, which is more effective than using microorganisms, phytoremediation, or functional materials alone. The combination of physicochemical methods (functional materials) and microbiological methods (bacteria and fungi, rhizosphere, symbiotic and non-symbiotic) supported by plants (hyperaccumulators) is a promising approach for reducing chemicals from soil. Key examples of the synergistic effects of combining plant-microorganism-functional materials have been provided in this article.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Plantas/metabolismo , Solo , Metais Pesados/metabolismo
7.
Materials (Basel) ; 16(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37374547

RESUMO

BACKGROUND: The creation of the denture base material with bioactive properties that releases ions and produces hydroxyapatite. METHODS: Acrylic resins were modified by the addition of 20% of four types of bioactive glasses by mixing with powders. Samples were subjected to flexural strength (1, 60 days), sorption and solubility (7 days), and ion release at pH 4 and pH 7 for 42 days. Hydroxyapatite layer formation was measured using infrared. RESULTS: Biomin F glass-containing samples release fluoride ions for a period of 42 days (pH = 4; Ca = 0.62 ± 0.09; P = 30.47 ± 4.35; Si = 22.9 ± 3.44; F = 3.1 ± 0.47 [mg/L]). The Biomin C (contained in the acrylic resin releases (pH = 4; Ca = 41.23 ± 6.19; P = 26.43 ± 3.96; Si = 33.63 ± 5.04 [mg/L]) ions for the same period of time. All samples have a flexural strength greater than 65 MPa after 60 days. CONCLUSION: The addition of partially silanized bioactive glasses allows for obtaining a material that releases ions over a longer period of time. CLINICAL SIGNIFICANCE: This type of material could be used as a denture base material, helping to preserve oral health by preventing the demineralization of the residual dentition through the release of appropriate ions that serve as substrates for hydroxyapatite formation.

8.
J Funct Biomater ; 14(6)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37367292

RESUMO

Restorative composites are subjected to various influences in the oral cavity environment, such as high or low temperatures, the mechanical force generated during mastication, colonization of various microorganisms, and low pH, which may result from ingested food and the influence of microbial flora. This study aimed to investigate the effect of a recently developed commercial artificial saliva (pH = 4, highly acidic) on 17 commercially available restorative materials. After polymerization, the samples were stored in an artificial solution for 3 and 60 days and subjected to crushing resistance and flexural strength tests. The surface additions of the materials were examined in terms of the shapes and sizes of the fillers and elemental composition. When stored in an acidic environment, the resistance of the composite materials was reduced by 2-12%. Larger compressive and flexural strength resistance values were observed for composites that could be bonded to microfilled materials (invented before 2000). This may result from the filler structure taking an irregular form, which results in a faster hydrolysis of silane bonds. All composite materials meet the standard requirements when stored for a long period in an acidic environment. However, storage of the materials in an acid environment has a destructive impact on the materials' properties.

9.
Bioengineered ; 14(1): 2184480, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381625

RESUMO

This paper reviews the scientific literature on the latest technologies for treating waste by chemical hydrolysis, enzymatic hydrolysis and supporting processes. Particular attention is focused on wastes of biological origin, especially high-protein materials and those containing fats and sugars, as valuable components can be extracted from these recyclables to produce plant growth-stimulating compounds and animal feed, chemicals, biofuels or biopolymers. The wastes with the greatest potential were identified and the legislative regulations related to their processing were discussed. Chemical and enzymatic hydrolysis were compared and their main applications directions and important process parameters were indicated, as well as the need to optimize them in order to increase the efficiency of extraction of valuable components.


Assuntos
Ração Animal , Biocombustíveis , Animais , Hidrólise , Desenvolvimento Vegetal , Tecnologia
10.
J Funct Biomater ; 14(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37233367

RESUMO

BACKGROUND: Color stability is a crucial performance parameter for dental restorations, and limited research exists on how surface preparation methods affect it. The purpose of this study was to test the color stability of three resins intended for 3D printing, which can be used to make dentures or crowns in A2 and A3 colors. MATERIALS AND METHODS: Samples were prepared in the form of incisors; the first group was not subjected to any treatment after curing and washing with alcohol, the second was covered with light-curing varnish, and the third was polished in a standard way. Then, the samples were placed in solutions of coffee, red wine, and distilled water and stored in the laboratory. After 14, 30, and 60 days, color changes were measured (presented as Delta E) compared to material stored in the dark. RESULTS: The greatest changes were observed for samples that were not polished, then were placed in red wine dilutions (ΔE = 18.19 ± 0.16). Regarding the samples covered with varnish, during storage, some parts detached, and the dyes penetrated inside. CONCLUSIONS: 3D-printed material should be polished as thoroughly as possible to limit the adhesion of dyes from food to their surface. Applying varnish may be a temporary solution.

11.
J Environ Manage ; 338: 117794, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36996565

RESUMO

Leachate from separate digesters in biological wastewater treatment plants contains valuable biogenic compounds that can serve as fertilizer nutrients. In this study, a method was developed to utilize leachate from sewage sludge dewatering as a raw material for the preparation of a plant conditioner, providing water, nutrients, and growth-stimulating amino acids. A chemical conditioning procedure (65% HNO3) was used to prepare the leachate solution for fertilization. The feasibility of producing an amino acid-based fertilizer using shrimp shells and inorganic acids (96% H2SO4 and 85% H3PO4) was also demonstrated. Microbiological analysis confirmed the safety of the formulations, and chelation of micronutrients with available amino acids was proven (up to 100% chelating degree). The bioavailability of all nutrients was confirmed through extraction tests (extraction in neutral ammonium citrate). Germination tests showed similar fresh plant masses to those with commercial preparations, demonstrating the effectiveness of the developed technology. This approach aligns with circular economy principles and sustainable development and contributes to mitigating the impacts of climate change.


Assuntos
Fertilizantes , Esgotos , Esgotos/química , Águas Residuárias , Nutrientes , Aminoácidos
12.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770271

RESUMO

S. aureus is the cause of many diseases, including numerous infections of the skin. One way to help combat skin infections is to use bandages containing activated carbon. Currently, there are no dressings on the market that use the synergistic effect of activated carbon and antibiotics. Thus, in this study, we point out the adsorption level of an antimicrobial substance on three different active carbons of different origins; by examining the inhibition level of the growth of S. aureus bacteria, we determined the number of live cells adsorbed on activated carbons depending on the presence of gentamicin in the solution. In addition, we designed and synthesized a new antibacterial substance with a new mechanism of action to act as a bacterial protease inhibitor, as well as determining the antibacterial properties conducted through adsorption. Our results demonstrate that activated carbons with adsorbed antibiotics show better bactericidal properties than activated carbon alone or the antibiotic itself. The use of properly modified activated carbons may have a beneficial effect on the development and functioning of new starting materials for bacteria elimination, e.g., in wound-healing treatments in the future.

13.
Environ Pollut ; 319: 120924, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36565906

RESUMO

A technological solution was developed to process slaughter waste and farm manure and transform them into organic and mineral fertilizers. It has been shown that the formation of an enclosure on a goose farm from nitrogen-binding substances (brown coal, a mixture of brown coal with magnesite, used ash substrate) has a positive effect on reducing nitrogen emissions, even to about 80%. The presented solution is in line with ecological trends and ensures comprehensive management of agri-food waste. It reduces the loss of valuable nutrients from renewable sources, increases the efficiency of fertilizers and reduces the environmental nuisance of poultry farms. Organic-mineral fertilizers made from slaughterhouse waste and poultry manure were as effective as expensive commercial mineral fertilizers. New fertilizers helped to obtain a yield similar to the groups fertilized with mineral fertilizers: 11 t per ha for maize (grain), 0.8 t per ha for mustard (seed), 10 kg per 1 m2 of radish (all), and 18.5 kg per 1 m2 of beet (whole) while reducing production costs thanks to the use of waste materials.


Assuntos
Eliminação de Resíduos , Solo , Animais , Solo/química , Fertilizantes/análise , Esterco , Alimentos , Agricultura , Minerais , Nitrogênio/análise , Carvão Mineral
14.
J Environ Manage ; 326(Pt A): 116602, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375429

RESUMO

In the current situation of a serious raw material crisis related to the disruption of supply chains, the bioeconomy is of particular significance. Rising prices and the problem with the availability of natural gas have made N fertilizers production very expensive. It is expected that due to natural gas shortages, conventional production of nitrogen fertilizers by chemical synthesis will be hindered in the coming season. An important alternative and an opportunity to solve the problems of fertilizer nitrogen availability are biological wastewater treatment plants, which can be treated as a renewable biological nitrogen mines. Sewage sludge (including activated sludge) contains up to 6-8% DM. N. Considering the quantity of sewage sludge generated in wastewater treatment plants, it can become an important raw material for the sustainable production of organic-mineral fertilizers from renewable resources available locally, with a low carbon footprint. Furthermore, the sewage sludge management method should take nitrogen retention into account and should not allow the emission of greenhouse gases containing nitrogen. This article analyzes the technological solutions of nitrogen recovery for fertilization purposes from biological wastewater treatment plants in the context of a new and difficult resource situation. Conventional and new nitrogen recovery methods were analyzed from the perspective of the current legal situation. An attempt was made to evaluate the possibility of implementing the assumptions of the circular economy through the recovery of renewable nitrogen resources from municipal wastewater treatment plants.


Assuntos
Esgotos , Purificação da Água , Fertilizantes , Nitrogênio/análise , Gás Natural
15.
J Environ Manage ; 325(Pt A): 116463, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270132

RESUMO

The work concerns the thermodynamic analysis of CH4 reforming with various oxidants (CO2, H2O, O2) in the technological variants DRM (Dry Reforming of Methane) and TRM (Tri-reforming of Methane) technological variants. Both processes of synthesis gas production (raw material for the production of value-added products) are problematic in terms of environmental protection. In the process, two components of greenhouse gases are used as a substrate: CO2 and CH4. The influence of temperature, pressure, and the molar ratio of oxidants to methane on the efficiency of both processes was analyzed using the deterministic method: raw material conversion, product efficiency and selectivity - H2 and CO, and the value of the H2/CO ratio characterizing the suitability of the synthesis gas for various syntheses. The problem of carbon deposition tendency in DRM was minimized through the selection of operational process conditions, and in the case of TRM, it was fully reduced. The deterministic method of non-linear programming by defining the objective function with constraints helped formulate allowed one the values of TRM parameters: complete reduction of the coking problem, maintaining the H2/CO ratio at the desired level - 2 and CO2 conversion equal to 90%, led to a hydrogen efficiency of over 90%. This efficiency can be obtained at the process temperature T = 273 K, with a pressure of 1 atm, and the molar ratios of oxidants to methane: CH4/CO2/H2O/O2 = 1/0.36/0.77/0.01.

16.
Environ Sci Pollut Res Int ; 30(4): 8759-8777, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35589903

RESUMO

The studies presented in this work show that solid tannery waste-like shavings can be used as high-protein materials for fertilizer production following the concept of the circular economy. To select appropriate process parameters (mass ratio of shavings meal to the hydrolyzing agent (S:L), hydrolysis medium concentration, temperature) and to ensure the highest possible hydrolysis efficiency, it is useful to apply the well-known response surface methodology (RSM). The analyses revealed that chromium shavings (SCr) were most preferably treated with 10% KOH in a ratio of S:L 1:1 with the process being carried out at 160 °C (6.59% N). The optimal hydrolysis conditions for non-chromium (S) shavings were: S:L ratio 1:2, 10% H2SO4, and temperature 160 °C (4.08% N). Chromium concentrations in hydrolysates from S and SCr shavings obtained under optimal conditions were 15.2 mg/kg and 9483 mg/kg, respectively. Hydrolysate samples were analyzed by reversed-phase high-pressure liquid chromatography (RP-HPLC) that revealed that the type of hydrolysis (acidic/alkaline) affects the amino acid profile. Approximately 4.5 times more amino acids were extracted in the KOH environment than during acidic treatment. The hydrolysates contained mainly glycine, alanine, and proline, which are primarily responsible for stimulating plant growth by supporting chlorophyll synthesis, chelating micronutrients, improving pollen fertility, or resistance to low temperatures. The conversion of tannery waste into fertilizer requires the control of contaminant levels, especially chromium, which can oxidize to the carcinogenic form Cr(VI) that is hazardous to humans and the environment.


Assuntos
Fertilizantes , Nitrogênio , Humanos , Fertilizantes/análise , Nitrogênio/análise , Resíduos Industriais/análise , Cromo/química , Temperatura , Resíduos Sólidos/análise , Curtume
17.
J Funct Biomater ; 15(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38248683

RESUMO

The colonisation of the surface of removable acrylic dentures by various types of microorganisms can lead to the development of various diseases. Therefore, the creation of a bioactive material is highly desirable. This study aimed to develop a denture base material designed to release bioactive ions into the oral environment during use. Four types of bioactive glasses (BAG)-S53P4, Biomin F, 45S5, and Biomin C-were incorporated into the PMMA acrylic resin, with each type constituting 20 wt.% (10 wt.% non-silanised and 10% silanised) of the mixture, while PMMA acrylic resin served as the control group. The specimens were subsequently immersed in distilled water, and pH measurements of the aqueous solutions were taken every seven days for a total of 38 days. Additionally, surface roughness and translucency measurements were recorded both after preparation and following seven days of immersion in distilled water. The cytotoxicity of these materials on human fibroblast cells was evaluated after 24 and 48 h using Direct Contact and MTT assays. Ultimately, the elemental composition of the specimens was determined through energy-dispersive X-ray (EDX) spectroscopy. In general, the pH levels of water solutions containing BAG-containing acrylics gradually increased over the storage period, reaching peak values after 10 days. Notably, S53P4 glass exhibited the most significant increase, with pH levels rising from 5.5 to 7.54. Surface roughness exhibited minimal changes upon immersion in distilled water, while a slight decrease in material translucency was observed, except for Biomin C. However, significant differences in surface roughness and translucency were observed among some of the BAG-embedded specimens under both dry and wet conditions. The composition of elements declared by the glass manufacturer was confirmed by EDX analysis. Importantly, cytotoxicity analysis revealed that specimens containing BAGs, when released into the environment, did not adversely affect the growth of human gingival fibroblast cells after 48 h of exposure. This suggests that PMMA acrylics fabricated with BAGs have the potential to release ions into the environment and can be considered biocompatible materials. Further clinical trials are warranted to explore the practical applications of these materials as denture base materials.

18.
Sci Rep ; 12(1): 16624, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198737

RESUMO

This study aimed to prepare a bioactive acrylic material by adding different types of glasses. Commercially available polymerized acrylic resin was mixed with 10% of four different types of glasses in the powder form and cured. Flexural strength, sorption, and solubility of the samples were tested according to ISO 20795-1:2013. The total number of samples used in the tests were 60. The materials were placed in artificial saliva of pH 4 and 7, and elution was performed for 0, 1, 28, and 42 days. The collected samples were analyzed using inductively coupled plasma atomic emission spectrometry to detect Ca, P, and Si ions and using ion chromatography to detect F ions. The materials obtained after modification with glasses showed lower compressive strength compared with pure polymethyl methacrylate but met the standard requirements. Two glass types showed higher solubility values compared with the value defined by the ISO standard. Biomin C and S53P4 released Ca, P, and Si ions, respectively, after 42 days in artificial saliva. Acrylic resins modified with 10% Biomin C and S53P4 glasses can be a valuable source of Ca and P ions under acid conditions for 28 and 42 days.


Assuntos
Resinas Acrílicas , Polimetil Metacrilato , Resinas Acrílicas/química , Teste de Materiais , Polimetil Metacrilato/química , Pós , Saliva Artificial
19.
Environ Res ; 215(Pt 1): 114304, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100107

RESUMO

The increasing amount of bio-waste creates the need to develop a method for efficient management based on processes that are more environmentally friendly than incineration and composting. This research aimed to utilize the waste of raspberry seeds after supercritical CO2 extraction. The biomass was enriched with micronutrients by the biosorption process to prepare micronutrient fertilizers for organic farming and biofortification of raspberries fruits. It was observed that at 100% dose of micronutrients, raspberry crop yield increased by 3%, and transfer of micronutrients to fruit biomass increased by 4.7%, 6.4%, and 8.8% (Cu, Mn, Zn, respectively) compared to commercial fertilizer. The supply of micronutrients at a dose of 150% led to a significant increase in micronutrient content of 3%, 41%, and 8% (Cu, Mn, and Zn, respectively) compared to commercial fertilizer. Research shows that the application of higher doses of micronutrients leads to the enrichment of edible parts of fruits, and fertilizers ensure environmental safety. The fruits contained on average 11.5% more microelements compared to the groups fertilized with the commercial product. The fruit yield (9.09-10.4 Mg per hectare) and the sugar content (9.82-10.2%) were also the highest. The micronutrients released from fertilizers and available to plants throughout the vegetation period affect the increase in yield, especially in the case of plants fruiting several times a year.


Assuntos
Rubus , Oligoelementos , Biofortificação , Biomassa , Dióxido de Carbono , Fertilizantes/análise , Frutas/química , Micronutrientes , Solo , Açúcares
20.
J Environ Manage ; 321: 116002, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104889

RESUMO

The aim of the research work was to present a multilayer hydrogel capsule with controlled nutrient release properties as an innovative fertilizer designed for sustainable agriculture. Preparation of the capsules included the following steps: sorption of micronutrients (Cu, Mn, Zn) on eggshells (1) and their immobilization in sodium alginate, with the crosslinking agent being the NPK solution (2). The capsules were coated with an additional layer of a mixture of biopolymers (0.79% alginate, 0.24% carboxymethylcellulose and 8.07% starch)by means of dipping and spraying techniques. The biocomposites were characterized by limited (<10% within 100 h for the structures encapsulated by the dipping method) release of fertilizer ions (except for small K+ ions). The hydrogel fertilizer formulations were analyzed for physicochemical properties such as macro- and micronutrient content, surface morphology analysis, coating structure evaluation, mechanical properties, swelling and drying kinetics. High nutrient bioavailability was confirmed in vitro (extraction in water and neutral ammonium citrate). Germination and pot tests have revealed that the application of multicomponent hydrogel fertilizers increases the length of cucumber roots by 20%, compared to the commercial product.


Assuntos
Fertilizantes , Hidrogéis , Agricultura , Alginatos , Cápsulas , Fertilizantes/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...