Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 201: 116205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452629

RESUMO

To mitigate marine pollution, we improved the photo-Fenton reaction of modified nanoscale CuO/BiVO4 photocatalysts to resolve the challenge of efficient microplastic degradation in wastewater treatment. Material property analysis and computational results revealed that deposition of CuO onto BiVO4 nanocomposites improved photocatalytic activity by promoting an excess of electrons in CuO and surface charge transfer, resulting in an increased production of e--h+ for ROS generation via H2O2 activation. 1O2 was dominated and identified through quenching experiments, XPS analysis, and EPR. ROS generation increased via H2O2 activation, causing major surface abrasion and increased carbonyl and vinyl indices in microplastics. Treated water had minimal impact on Lycopersicon esculentum Mill. seedling growth but caused considerable mortality in cell lines and Moina macrocopa mortality at greater dosages due to their sensitivity to ions and H2O2 residuals. Overall, this treatment can effectively degrade microplastics, but the dilution of treated water is still needed before being discharged.


Assuntos
Bismuto , Cladocera , Microplásticos , Plásticos , Vanadatos , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Cobre , Água , Meio Ambiente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...