Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 15: 11, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25879765

RESUMO

BACKGROUND: Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60-70°C. RESULTS: A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50-70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes. CONCLUSION: Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.


Assuntos
Celulase/química , Celulase/genética , Celulose/metabolismo , Mutagênese , Trichoderma/enzimologia , Celulase/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Meia-Vida , Temperatura Alta , Modelos Moleculares , Neurospora crassa/genética , Neurospora crassa/metabolismo , Conformação Proteica , Ácido Pirrolidonocarboxílico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Trichoderma/química , Trichoderma/genética
2.
Biotechnol Bioeng ; 111(4): 842-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24375151

RESUMO

The commercialization of lignocellulosic biofuels relies in part on the ability to engineer cellulase enzymes to have properties compatible with practical processing conditions. The cellulase Cel7A has been a common engineering target because it is present in very high concentrations in commercial cellulase cocktails. Significant effort has thus been focused on its recombinant expression. In particular, the yeast Saccharomyces cerevisiae has often been used both in the engineering and basic study of Cel7A. However, the expression titer and extent of glycosylation of Cel7A expressed in S. cerevisiae vary widely for Cel7A genes from different organisms, and the recombinant enzymes tend to be less active and less stable than their native counterparts. These observations motivate further study of recombinant expression of Cel7A in S. cerevisiae. Here, we compare the properties of Cel7A from Talaromyces emersonii expressed in both the budding yeast S. cerevisiae and the filamentous fungus Neurospora crassa. The Cel7A expressed in N. crassa had a higher melting temperature (by 10°C) and higher specific activity (twofold at 65°C) than the Cel7A expressed in S. cerevisiae. We examined several post-translational modifications and found that the underlying cause of this disparity was the lack of N-terminal glutamine cyclization in the Cel7A expressed in S. cerevisiae. Treating the enzyme in vitro with glutaminyl cyclase improved the properties of Cel7A expressed in S. cerevisiae to match those of Cel7A expressed in N. crassa.


Assuntos
Celulase/química , Engenharia de Proteínas/métodos , Ácido Pirrolidonocarboxílico/química , Celulase/metabolismo , Celulose/análise , Celulose/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Ácido Pirrolidonocarboxílico/metabolismo , Saccharomyces cerevisiae/enzimologia
3.
Rev Sci Instrum ; 84(11): 114102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24289409

RESUMO

A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10,000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.


Assuntos
Dispositivos Ópticos , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Temperatura , Modelos Moleculares , Lectinas de Plantas/química , Polissacarídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica , Fatores de Tempo , Titânio/química
4.
ACS Nano ; 6(8): 6675-80, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22830952

RESUMO

We report a convenient new technique for the labeling of filamentous phage capsid proteins. Previous reports have shown that phage coat protein residues can be modified, but the lack of chemically distinct amino acids in the coat protein sequences makes it difficult to attach high levels of synthetic molecules without altering the binding capabilities of the phage. To modify the phage with polymer chains, imaging groups, and other molecules, we have developed chemistry to convert the N-terminal amines of the ~4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the attachment of alkoxyamine groups through oxime formation. Specifically, we demonstrate the attachment of fluorophores and up to 3000 molecules of 2 kDa poly(ethylene glycol) (PEG2k) to each of the phage capsids without significantly affecting the binding of phage-displayed antibody fragments to EGFR and HER2 (two important epidermal growth factor receptors). We also demonstrate the utility of the modified phage for the characterization of breast cancer cells using multicolor fluorescence microscopy. Due to the widespread use of filamentous phage as display platforms for peptide and protein evolution, we envision that the ability to attach large numbers of synthetic functional groups to their coat proteins will be of significant value to the biological and materials communities.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/metabolismo , Proteínas do Capsídeo/farmacocinética , Meios de Contraste/síntese química , Inovirus/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Imagem Molecular/métodos , Coloração e Rotulagem/métodos
5.
J Biol Chem ; 287(27): 22593-608, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22549775

RESUMO

DNA and protein arrays are commonly accepted as powerful exploratory tools in research. This has mainly been achieved by the establishment of proper guidelines for quality control, allowing cross-comparison between different array platforms. As a natural extension, glycan microarrays were subsequently developed, and recent advances using such arrays have greatly enhanced our understanding of protein-glycan recognition in nature. However, although it is assumed that biologically significant protein-glycan binding is robustly detected by glycan microarrays, there are wide variations in the methods used to produce, present, couple, and detect glycans, and systematic cross-comparisons are lacking. We address these issues by comparing two arrays that together represent the marked diversity of sialic acid modifications, linkages, and underlying glycans in nature, including some identical motifs. We compare and contrast binding interactions with various known and novel plant, vertebrate, and viral sialic acid-recognizing proteins and present a technical advance for assessing specificity using mild periodate oxidation of the sialic acid chain. These data demonstrate both the diversity of sialic acids and the analytical power of glycan arrays, showing that different presentations in different formats provide useful and complementary interpretations of glycan-binding protein specificity. They also highlight important challenges and questions for the future of glycan array technology and suggest that glycan arrays with similar glycan structures cannot be simply assumed to give similar results.


Assuntos
Glicolipídeos/metabolismo , Glicômica , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Análise Serial de Proteínas , Acetilação , Anticorpos/imunologia , Especificidade de Anticorpos , Antígenos CD/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicolipídeos/imunologia , Glicômica/instrumentação , Glicômica/métodos , Glicômica/normas , Lectinas/metabolismo , Ácido N-Acetilneuramínico/imunologia , Oxirredução , Ácido Periódico/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/imunologia , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Análise Serial de Proteínas/normas , Reprodutibilidade dos Testes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
6.
Mol Biosyst ; 7(12): 3343-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22009201

RESUMO

Interactions of glycan-binding proteins (GBPs) with glycans are essential in cell adhesion, bacterial/viral infection, and cellular signaling pathways. Experimental characterization of these interactions based on glycan microarrays typically involves (1) labeling GBPs directly with fluorescent reagents before incubation with the microarrays, or (2) labeling GBPs with biotin before the incubation and detecting the captured GBPs after the incubation using fluorescently labeled streptavidin, or (3) detecting the captured GBPs after the incubation using fluorescently labeled antibodies raised against the GBPs. The fluorescent signal is mostly measured ex situ after excess fluorescent materials are washed off. In this study, by using a label-free optical scanner for glycan microarray detection, we measured binding curves of 7 plant lectins to 24 glycans: four ß1-4-linked galactosides, three ß1-3-linked galactosides, one ß-linked galactoside, one α-linked N-acetylgalactosaminide, eight α2-3-linked sialosides, and seven α2-6-linked sialosides. From association and dissociation constants deduced by global-fitting the binding curves, we found that (1) labeling lectins directly with fluorescent agents change binding profiles of lectins, in some cases by orders of magnitude; (2) those lectin-glycan binding reactions characterized with large dissociation rates, though biologically relevant, are easily missed or deemed insignificant in ex situ fluorescence-based assays as most captured lectins are washed off before detection. This study highlights the importance of label-free real-time detection of protein-ligand interactions and the potential pitfall in interpreting fluorescence-based assays for characterization of protein-glycan interactions.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Lectinas de Plantas/metabolismo , Polissacarídeos/metabolismo , Ligantes , Lectinas de Plantas/química , Análise Serial de Proteínas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Coloração e Rotulagem
8.
Nat Commun ; 2: 375, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21730956

RESUMO

Despite extensive studies on microbial and enzymatic lignocellulose degradation, relatively few Archaea are known to deconstruct crystalline cellulose. Here we describe a consortium of three hyperthermophilic archaea enriched from a continental geothermal source by growth at 90 °C on crystalline cellulose, representing the first instance of Archaea able to deconstruct lignocellulose optimally above 90 °C. Following metagenomic studies on the consortium, a 90 kDa, multidomain cellulase, annotated as a member of the TIM barrel glycosyl hydrolase superfamily, was characterized. The multidomain architecture of this protein is uncommon for hyperthermophilic endoglucanases, and two of the four domains of the enzyme have no characterized homologues. The recombinant enzyme has optimal activity at 109 °C, a half-life of 5 h at 100 °C, and resists denaturation in strong detergents, high-salt concentrations, and ionic liquids. Cellulases active above 100 °C may assist in biofuel production from lignocellulosic feedstocks by hydrolysing cellulose under conditions typically employed in biomass pretreatment.


Assuntos
Archaea/enzimologia , Celulase/genética , Celulase/metabolismo , Estrutura Terciária de Proteína , Sequência de Bases , Celulase/isolamento & purificação , Biologia Computacional , Eletroforese , Meia-Vida , Funções Verossimilhança , Metagenômica , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Temperatura
9.
J Biol Chem ; 286(36): 31610-22, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-21757734

RESUMO

Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in ß-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.


Assuntos
Polissacarídeos/metabolismo , Análise Serial de Proteínas , Proteínas/metabolismo , Ácidos Siálicos/metabolismo , Vírus/metabolismo , Sítios de Ligação , Humanos , Vírus da Influenza A , Lectinas/metabolismo , Respirovirus , Ácidos Siálicos/química
10.
Cancer Res ; 71(9): 3352-63, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21505105

RESUMO

Human carcinomas can metabolically incorporate and present the dietary non-human sialic acid Neu5Gc, which differs from the human sialic acid N-acetylneuraminic acid (Neu5Ac) by 1 oxygen atom. Tumor-associated Neu5Gc can interact with low levels of circulating anti-Neu5Gc antibodies, thereby facilitating tumor progression via chronic inflammation in a human-like Neu5Gc-deficient mouse model. Here we show that human anti-Neu5Gc antibodies can be affinity-purified in substantial amounts from clinically approved intravenous IgG (IVIG) and used at higher concentrations to suppress growth of the same Neu5Gc-expressing tumors. Hypothesizing that this polyclonal spectrum of human anti-Neu5Gc antibodies also includes potential cancer biomarkers, we then characterize them in cancer and noncancer patients' sera, using a novel sialoglycan microarray presenting multiple Neu5Gc-glycans and control Neu5Ac-glycans. Antibodies against Neu5Gcα2-6GalNAcα1-O-Ser/Thr (GcSTn) were found to be more prominent in patients with carcinomas than with other diseases. This unusual epitope arises from dietary Neu5Gc incorporation into the carcinoma marker Sialyl-Tn, and is the first example of such a novel mechanism for biomarker generation. Finally, human serum or purified antibodies rich in anti-GcSTn-reactivity kill GcSTn-expressing human tumors via complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. Such xeno-autoantibodies and xeno-autoantigens have potential for novel diagnostics, prognostics, and therapeutics in human carcinomas.


Assuntos
Autoanticorpos/sangue , Autoanticorpos/farmacologia , Biomarcadores Tumorais/sangue , Imunização Passiva/métodos , Ácido N-Acetilneuramínico/imunologia , Neoplasias/sangue , Neoplasias/terapia , Adenocarcinoma/sangue , Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Animais , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Neoplasias da Mama/terapia , Neoplasias do Colo/sangue , Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulinas Intravenosas/química , Imunoglobulinas Intravenosas/imunologia , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia
11.
Science ; 331(6016): 463-7, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21273488

RESUMO

The paucity of enzymes that efficiently deconstruct plant polysaccharides represents a major bottleneck for industrial-scale conversion of cellulosic biomass into biofuels. Cow rumen microbes specialize in degradation of cellulosic plant material, but most members of this complex community resist cultivation. To characterize biomass-degrading genes and genomes, we sequenced and analyzed 268 gigabases of metagenomic DNA from microbes adherent to plant fiber incubated in cow rumen. From these data, we identified 27,755 putative carbohydrate-active genes and expressed 90 candidate proteins, of which 57% were enzymatically active against cellulosic substrates. We also assembled 15 uncultured microbial genomes, which were validated by complementary methods including single-cell genome sequencing. These data sets provide a substantially expanded catalog of genes and genomes participating in the deconstruction of cellulosic biomass.


Assuntos
Bactérias/genética , Biomassa , Bovinos/microbiologia , Celulases/genética , Celulose/metabolismo , Metagenoma , Rúmen/microbiologia , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Celulase/genética , Celulase/metabolismo , Celulases/química , Celulases/metabolismo , Celulose 1,4-beta-Celobiosidase/genética , Celulose 1,4-beta-Celobiosidase/metabolismo , Genes Bacterianos , Genoma Bacteriano , Metagenômica/métodos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Poaceae/microbiologia , Rúmen/metabolismo , Análise de Sequência de DNA
12.
Biotechnol Bioeng ; 107(4): 601-11, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20623472

RESUMO

Improving the catalytic activity of cellulases requires screening variants against solid substrates. Expressing cellulases in microbial hosts is time-consuming, can be cellulase specific, and often leads to inactive forms and/or low yields. These limitations have been obstacles for improving cellulases in a high-throughput manner. We have developed a cell-free expression system and used it to express 54 chimeric bacterial and archaeal endoglucanases (EGs), with and without cellulose binding modules (CBMs) at either the N- or C-terminus, in active enzyme yields of 100-350 µg/mL. The platform was employed to systematically study the role of CBMs in cellulose hydrolysis toward a variety of natural and pretreated solid substrates, including ionic-liquid pretreated Miscanthus and AFEX-pretreated corn stover. Adding a CBM generally increased activity against crystalline Avicel, whereas for pretreated substrates the effect of CBM addition depended on the source of cellulase. The cell-free expression platform can thus provide insights into cellulase structure-function relationships for any substrate, and constitutes a powerful discovery tool for evaluating or engineering cellulolytic enzymes for biofuels production.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Biomassa , Celulases/metabolismo , Expressão Gênica , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Celulases/genética , Celulose/metabolismo , Poaceae/química , Poaceae/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Zea mays/química , Zea mays/metabolismo
13.
Org Biomol Chem ; 7(24): 5137-45, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20024109

RESUMO

para-Nitrophenol-tagged sialyl galactosides containing sialic acid derivatives in which the C5 hydroxyl group of sialic acids was systematically substituted with a hydrogen, a fluorine, a methoxyl or an azido group were successfully synthesized using an efficient chemoenzymatic approach. These compounds were used as valuable probes in high-throughput screening assays to study the importance of the C5 hydroxyl group of sialic acid in the recognition and the cleavage of sialoside substrates by bacterial sialidases.


Assuntos
Galactosídeos/síntese química , Neuraminidase/química , Ácidos Siálicos/química , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Neuraminidase/antagonistas & inibidores , Neuraminidase/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
14.
ACS Chem Biol ; 3(9): 567-76, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18729452

RESUMO

Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.


Assuntos
Técnicas de Química Combinatória/métodos , Glicosídeos/síntese química , Ácidos Siálicos/síntese química , Biotinilação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Sialiltransferases/metabolismo
15.
Glycobiology ; 18(10): 818-30, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18669916

RESUMO

Human heterophile antibodies that agglutinate animal erythrocytes are known to detect the nonhuman sialic acid N-glycolylneuraminic acid (Neu5Gc). This monosaccharide cannot by itself fill the binding site (paratope) of an antibody and can also be modified and presented in various linkages, on diverse underlying glycans. Thus, we hypothesized that the human anti-Neu5Gc antibody response is diverse and polyclonal. Here, we use a novel set of natural and chemoenzymatically synthesized glycans to show that normal humans have an abundant and diverse spectrum of such anti-Neu5Gc antibodies, directed against a variety of Neu5Gc-containing epitopes. High sensitivity and specificity assays were achieved by using N-acetylneuraminic acid (Neu5Ac)-containing probes (differing from Neu5Gc by one less oxygen atom) as optimal background controls. The commonest anti-Neu5Gc antibodies are of the IgG class. Moreover, the range of reactivity and Ig classes of antibodies vary greatly amongst normal humans, with some individuals having remarkably large amounts, even surpassing levels of some well-known natural blood group and xenoreactive antibodies. We purified these anti-Neu5Gc antibodies from individual human sera using a newly developed affinity method and showed that they bind to wild-type but not Neu5Gc-deficient mouse tissues. Moreover, they bind back to human carcinomas that have accumulated Neu5Gc in vivo. As dietary Neu5Gc is primarily found in red meat and milk products, we suggest that this ongoing antigen-antibody reaction may generate chronic inflammation, possibly contributing to the high frequency of diet-related carcinomas and other diseases in humans.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Ácidos Neuramínicos/imunologia , Animais , Anticorpos/sangue , Anticorpos/isolamento & purificação , Antígenos/imunologia , Doença , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Saúde , Humanos , Imuno-Histoquímica , Camundongos , Neoplasias/imunologia , Neoplasias/metabolismo
16.
Glycobiology ; 18(9): 686-97, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18509108

RESUMO

CstII from bacterium Campylobacter jejuni strain OH4384 has been previously characterized as a bifunctional sialyltransferase having both alpha2,3-sialyltransferase (GM3 oligosaccharide synthase) and alpha2,8-sialyltransferase (GD3 oligosaccharide synthase) activities which catalyze the transfer of N-acetylneuraminic acid (Neu5Ac) from cytidine 5'-monophosphate (CMP)-Neu5Ac to C-3' of the galactose in lactose and to C-8 of the Neu5Ac in 3'-sialyllactose, respectively (Gilbert M, Karwaski MF, Bernatchez S, Young NM, Taboada E, Michniewicz J, Cunningham AM, Wakarchuk WW. 2002. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J Biol Chem. 277:327-337). We report here the characterization of a truncated CstII mutant (CstIIDelta32(I53S)) cloned from a synthetic gene whose codons are optimized for an Escherichia coli expression system. In addition to the alpha2,3- and alpha2,8-sialyltransferase activities reported before for the synthesis of GM3- and GD3-type oligosaccharides, respectively, the CstIIDelta32(I53S) has alpha2,8-sialyltransferase (GT3 oligosaccharide synthase) activity for the synthesis of GT3 oligosaccharide. It also has alpha2,8-sialidase (GD3 oligosaccharide sialidase) activity that catalyzes the specific cleavage of the alpha2,8-sialyl linkage of GD3-type oligosaccharides and alpha2,8-trans-sialidase (GD3 oligosaccharide trans-sialidase) activity that catalyzes the transfer of a sialic acid from a GD3 oligosaccharide to a different GM3 oligosaccharide (3'-sialyllactoside). The donor substrate specificity study of the CstIIDelta32(I53S) GD3 oligosaccharide synthase activity indicates that the enzyme is flexible in using different CMP-activated sialic acids and their analogs for the synthesis of GD3 oligosaccharides containing natural and nonnatural modifications at the terminal sialic acid.


Assuntos
Campylobacter jejuni/enzimologia , Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Sialiltransferases/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Campylobacter jejuni/genética , Clonagem Molecular , Gangliosídeos/metabolismo , Cinética , Lactosilceramidas/metabolismo , Dados de Sequência Molecular , Sialiltransferases/genética , Sialiltransferases/isolamento & purificação , Sialiltransferases/metabolismo , Especificidade por Substrato
17.
Biotechnol Lett ; 30(4): 671-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17989925

RESUMO

Photobacterium damsela alpha2,6-sialyltransferase was cloned as N- and C- His-tagged fusion proteins with different lengths (16-497 aa or 113-497 aa). Expression and activity assays indicated that the N-terminal 112 amino acid residues of the protein were not required for its alpha2,6-sialyltransferase activity. Among four truncated forms tested, N-His-tagged Delta15Pd2,6ST(N) containing 16-497 amino acid residues had the highest expression level. Similar to the Delta15Pd2,6ST(N), the shorter Delta112Pd2,6ST(N) was active in a wide pH range of 7.5-10.0. A divalent metal ion was not required for the sialyltransferase activity, and the addition of EDTA and dithiothreitol did not affect the activity significantly.


Assuntos
Photobacterium/metabolismo , Sialiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia de Afinidade , Cromatografia Líquida de Alta Pressão , Ditiotreitol/farmacologia , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Íons/farmacologia , Cinética , Ácido N-Acetilneuramínico/metabolismo , Estrutura Terciária de Proteína , Prótons , Sialiltransferases/química , Sialiltransferases/genética , Relação Estrutura-Atividade
19.
Biochem Biophys Res Commun ; 361(2): 555-60, 2007 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-17662691

RESUMO

Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an alpha2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an alpha2,3-sialyltransferase that may be important for LOS sialylation.


Assuntos
Proteínas de Bactérias/metabolismo , Genes Bacterianos , Haemophilus ducreyi/enzimologia , Haemophilus ducreyi/genética , Sialiltransferases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Ditiotreitol/farmacologia , Ácido Edético/farmacologia , Haemophilus ducreyi/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Metais/farmacologia , Ácido N-Acetilneuramínico/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sialiltransferases/isolamento & purificação , Especificidade por Substrato
20.
Org Biomol Chem ; 5(15): 2458-63, 2007 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-17637967

RESUMO

Sialyl Tn (STn) and sialyl lactoside derivatives containing O-acetylated sialic acid residues have been chemoenzymatically synthesized using a one-pot three-enzyme system and conjugated to biotinylated human serum albumin (HSA) using an adipic acid para-nitrophenyl ester coupling reagent. This approach provides an efficient and general protocol for preparing carbohydrate-protein conjugates containing base-sensitive groups.


Assuntos
Biotina/química , Glicosídeos/química , Albumina Sérica/química , Albumina Sérica/metabolismo , Ácidos Siálicos/síntese química , Ácidos Siálicos/metabolismo , Sialiltransferases/metabolismo , Acetilação , Humanos , Estrutura Molecular , Ácidos Siálicos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...