Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762044

RESUMO

Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.


Assuntos
Agmatina , Neoplasias do Colo , Humanos , Animais , Ratos , Arginase , Arginina
2.
Invest New Drugs ; 40(5): 895-904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35857203

RESUMO

Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC50 values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.


Assuntos
Neoplasias Pulmonares , Neoplasias Gástricas , Animais , Apoptose , Arginase/farmacologia , Arginina , Autofagia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Geobacillus , Humanos , Hidrolases/farmacologia , Hidrolases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico
3.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050217

RESUMO

With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arginase/farmacologia , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Geobacillus/enzimologia , Proteínas Recombinantes/farmacologia , Arginase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Geobacillus/genética , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas Mutantes , Proteínas Recombinantes/genética , Ureia/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
4.
Int J Mol Sci ; 21(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545874

RESUMO

L-arginine (L-Arg) depletion induced by randomly PEGylated arginine deiminase (ADI-PEG20) can treat arginosuccinate synthase (ASS)-negative cancers, and ADI-PEG20 is undergoing phase III clinical trials. Unfortunately, ASS-positive cancers are resistant to ADI-PEG20. Moreover, the yield of ADI production is low because of the formation of inclusion bodies. Here, we report a thermostable arginine-depleting enzyme, Bacillus caldovelox arginase mutant (BCA-M: Ser161->Cys161). An abundant amount of BCA-M was easily obtained via high cell-density fermentation and heat treatment purification. Subsequently, we prepared BCA-M-PEG20, by conjugating a single 20 kDa PEG monomer onto the Cys161 residue via thio-chemistry. Unlike ADI-PEG20, BCA-M-PEG20 significantly inhibited ASS-positive lung cancer cell growth. Pharmacodynamic studies showed that a single intraperitoneal injection (i.p). administration of 250 U/mouse of BCA-M-PEG20 induced low L-Arg level over 168 h. The mono-PEGylation of BCA-M prolonged its elimination half-life from 6.4 to 91.4 h (a 14-fold increase). In an A549 lung cancer xenograft model, a weekly administration of 250 U/mouse of BCA-M-PEG20 suppressed tumor growth significantly. We also observed that BCA-M-PEG20 did not cause any significant safety issue in mouse models. Overall, BCA-M-PEG20 showed excellent results in drug production, potency, and stability. Thereby, it has great potential to become a promising candidate for lung cancer therapy.


Assuntos
Arginase/farmacologia , Geobacillus/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Células A549 , Animais , Arginase/química , Arginase/genética , Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Estabilidade de Medicamentos , Geobacillus/genética , Meia-Vida , Humanos , Hidrolases/administração & dosagem , Hidrolases/farmacologia , Injeções Intraperitoneais , Neoplasias Pulmonares/metabolismo , Camundongos , Modelos Moleculares , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Chem Commun (Camb) ; 50(80): 11899-902, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25154886

RESUMO

Modular assembly of cyclometalated gold(III) complexes by choosing appropriate bidentate C,N-donor ligands and ancillary ligands for chemoselective cysteine modification of peptides and proteins via C-S bond-forming reductive elimination has been achieved.


Assuntos
Cisteína/química , Compostos Organoáuricos/química , Peptídeos/química , Soroalbumina Bovina/química , Albumina Sérica/química , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução
8.
Chem Commun (Camb) ; 48(29): 3527-9, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22378218

RESUMO

An efficient approach for modular assembly of multifunctional bioconjugates from oligosaccharides, peptides and proteins with fluorescent probes/affinity tags based on Morita-Baylis-Hillman (MBH) reaction in aqueous medium has been developed.


Assuntos
Aldeídos/química , Cetonas/química , Fenômenos de Química Orgânica , Rafinose/química , Corantes Fluorescentes/química , Oligopeptídeos/química , Piperazinas/química , Soroalbumina Bovina/química
9.
J Am Chem Soc ; 134(5): 2589-98, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22288779

RESUMO

A method of highly selective N-terminal modification of proteins as well as peptides by an isolated ketene was developed. Modification of a library of unprotected peptides XSKFR (X varies over 20 natural amino acids) by an alkyne-functionalized ketene (1) at room temperature at pH 6.3 resulted in excellent N-terminal selectivity (modified α-amino group/modified ε-amino group = >99:1) for 13 out of the 20 peptides and moderate-to-high N-terminal selectivity (4:1 to 48:1) for 6 of the 7 remaining peptides. Using an alkyne-functionalized N-hydroxysuccinimide (NHS) ester (2) instead of 1, the modification of peptides XSKFR gave internal lysine-modified peptides for 5 out of the 20 peptides and moderate-to-low N-terminal selectivity (5:1 to 1:4) for 13 out of the 20 peptides. Proteins including insulin, lysozyme, RNaseA, and a therapeutic protein BCArg were selectively N-terminally modified at room temperature using ketene 1, in contrast to the formation of significant or major amounts of di-, tri-, or tetra-modified proteins in the modification by NHS ester 2. The 1-modified proteins were further functionalized by a dansyl azide compound through click chemistry without the need for prior treatment.


Assuntos
Etilenos/química , Cetonas/química , Peptídeos/química , Proteínas/química , Etilenos/síntese química , Cetonas/síntese química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
10.
Org Biomol Chem ; 10(5): 925-30, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22076205

RESUMO

An efficient modular approach for single-site incorporation of two independent functionalities (amines and alkynes) into aldehyde-containing oligosaccharides concurrently by using a one-pot gold-mediated three-component coupling reaction in aqueous medium under mild conditions has been developed.


Assuntos
Alcinos/química , Aminas/química , Ouro/química , Oligossacarídeos/química , Aldeídos/química
11.
Pigment Cell Melanoma Res ; 24(2): 366-76, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21029397

RESUMO

Melanoma has been shown to require arginine for growth, thus providing a potential Achilles' heel for therapeutic exploitation. Our investigations show that arginine depletion, using a recombinant form of human arginase I (rhArg), efficiently inhibits the growth of mammalian melanoma cell lines in vitro. These cell lines are consistently deficient in ornithine transcarbamylase (OTC) expression, correlating with their sensitivity to rhArg. Cell cycle distribution of A375 human melanoma cells treated with rhArg showed a remarkable dual-phase cell cycle arrest in S and G2/M phases, in contrast to the G2/M single-phase arrest observed with arginine deiminase (ADI), another arginine-degrading enzyme. rhArg and ADI both induced substantial apoptosis in A375 cells, accompanied by global modulation of cell cycle- and apoptosis-related transcription. Moreover, PEGylated rhArg dramatically inhibited the growth of A375 and B16 melanoma xenografts in vivo. Our results establish for the first time that (PEGylated) rhArg is a promising candidate for effective melanoma treatment, with fewer safety issues than ADI. Insight into the mechanism behind the antiproliferative activity of rhArg could inform us in designing combination therapies for future clinical trials.


Assuntos
Apoptose/efeitos dos fármacos , Arginase , Ciclo Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Melanoma/patologia , Proteínas Recombinantes , Animais , Arginase/genética , Arginase/farmacologia , Arginase/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Melanoma/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/fisiopatologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/antagonistas & inibidores
13.
Cancer Cell Int ; 9: 9, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19374748

RESUMO

BACKGROUND: Protein used in medicine, e.g. interferon, are immunogenic and quickly broken down by the body. Pegylation is a recognized way of preserving their integrity and reducing immune reactions, and works well with enzymes used to degrade amino acids, a recent focus of attention in controlling cancer growth. Of the two arginine-degrading enzymes being explored clinically, arginine deiminase is a decidedly foreign mycoplasm-derived enzyme, whereas human arginase 1 is a native liver enzyme. Both have been pegylated, the former with adjuncts of 20 kD, the latter with 5 kD PEG. Pegylation is done by several different methods, not all of which are satisfactory or desirable. METHODS: The preparation of novel polyethylene glycol (PEG) derivatives for modifying proteins is described, but directed specifically at pegylation of recombinant human arginase 1 (rhArg1). rhArg1 expressed in Escherichia coli was purified and coupled in various ways with 5 different PEG molecules to compare their protective properties and the residual enzyme activity, using hepatocellular cell lines both in vitro and in vivo. RESULTS: Methoxypolyethylene glycol-succinimidyl propionate (mPEG-SPA 5,000) coupled with very high affinity under mild conditions. The resulting pegylated enzyme (rhArg1-peg5,000 mw) had up to 6 PEG chains of 5K length which not only protected it from degradation and any residual immunogenicity, but most importantly let it retain >90% of its native catalytic activity. It remained efficacious in depleting arginine in rats after a single ip injection of 1,500 U of the conjugate as the native enzyme, plasma arginine falling to >0.05 microM from approximately 170 microM within 20 min and lasting 6 days. The conjugate had almost the same efficacy as unpegylated rhArg1 on 2 cultured human liver cancer (HCC) cell lines. It was considerably more effective than 4 other pegylated conjugates prepared. CONCLUSION: Valuable data on the optimization of the pegylation procedure and choice of ligand that best stabilizes the enzyme arginase 1 are presented, a protocol that should equally fit many other enzymes and proteins. It is a long lasting arginine-depleting enzyme in vivo which will greatly improve its use in anti-cancer therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...