Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 390(3): 385-398, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36075993

RESUMO

Branchial chambers constitute the main osmoregulatory site in almost all decapod crustaceans. However, few studies have been devoted to elucidate the cellular function of specific cells in every osmoregulatory structure of the branchial chambers. In decapod crustaceans, it is well-known that the osmoregulatory function is localized in specific structures that progressively specialize from early developmental stages while specific molecular mechanisms occur. In this study, we found that although the structures developed progressively during the larval and postlarval stages, before reaching juvenile or adult morphology, the osmoregulatory capabilities of Litopenaeus vannamei were gradually established only during the development of branchiostegites and epipodites, but not gills. The cellular structures of the branchial chambers observed during the larval phase do not present the typical ultrastructure of ionocytes, neither Na+/K+-ATPase expression, likely indicating that pleura, branchiostegites, or bud gills do not participate in osmoregulation. During early postlarval stages, the lack of Na+/K+-ATPase immunoreactivity of the ionocytes from the branchiostegites and epipodites suggests that they are immature ionocytes (ionocytes type I). It could be inferred from IIF and TEM results that epipodites and branchiostegites are involved in iono-osmoregulation from PL15, while gills and pleura do not participate in this function.


Assuntos
Penaeidae , ATPase Trocadora de Sódio-Potássio , Animais , ATPase Trocadora de Sódio-Potássio/metabolismo , Osmorregulação , Equilíbrio Hidroeletrolítico , Brânquias , Larva/metabolismo , Salinidade
2.
Environ Microbiol ; 21(11): 4046-4061, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336033

RESUMO

Fungi from marine environments have been significantly less studied than terrestrial fungi. This study describes distribution patterns and associated habitat characteristics of the mycobiota of deep-sea sediments collected from the Mexican exclusive economic zone (EEZ) of the Gulf of Mexico (GoM), ranging between 1000 and > 3500 m depth. Internal Transcribed Spacer 1 (ITS1) amplicons were sequenced by Illumina MiSeq. From 29 stations sampled across three annual campaigns, a total of 4421 operational taxonomic units (OTUs) were obtained, indicating a high fungal richness. Most OTUs assignments corresponded to Ascomycota, unidentified fungi and Basidiomycota. The majority of the stations shared a mere 31 OTUs, including the worldwide reported genera Penicillium, Rhodotorula and Cladosporium. Both a transient and a conserved community were identified, suggesting their dependence on or adaptation to the habitat dynamics, respectively. The differences found in fungal richness and taxonomic compositions were correlated principally with latitude, carbon and carbonates content, and terrigenous content, which could be the potential drivers that delimit fungal distribution. This study represents an expansion of our current knowledge on the biogeography of the fungal community from deep-sea sediments, and identifies the geographic and physicochemical properties that delimit fungal composition and distribution in the GoM.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/genética , Micobioma/genética , Ascomicetos/isolamento & purificação , Basidiomycota/isolamento & purificação , Ecossistema , Sedimentos Geológicos/microbiologia , Golfo do México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...