Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-822808

RESUMO

@#Background: The cytokine cascade in the immunopathogenesis of malaria infection had been widely studied. However, their specific association with survival and severe infection remained obscure.Methods: Thestudy investigated the cytokine profiles and histopathological features of malaria in the severe infection and survival models by using male ICR mice and male Sprague Dawley rats respectively.Results: The severe model, the infected ICR mice, exhibited a high parasitemia with 100% mortality after peak parasitemia at day 5 post-infection. The survival model, the infected Sprague Dawley rats, showed mild parasitemia with full recovery by day 14 of infection. Both severe and survival models showed similar histopathological severity during peak parasitemia. The severe model produced highly elevated levels of pro-inflammatory cytokines, TNF-α and IL-1α, and low levels of the anti-inflammatory cytokine, IL-4; while the survival model showed low levels of TNF-α and IL-1α with high levels of IL-4.Conclusion: There were differences in the pathogenesis of the severe and survival models of malaria infection. These could be a basis for immunotherapy of malaria in the future

2.
Iran J Parasitol ; 7(4): 62-74, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23323093

RESUMO

BACKGROUND: Animal models with various combination of host-parasite have long been employed to study malaria pathogenesis. Here, we describe the combination of Plasmodium berghei ANKA infection in inbred ICR mice as a model of cerebral malaria (CM). METHODS: Infection in mice was initiated by intraperitoneal injection of 2 x 10(7) (0.2ml) parasitized red blood cells (PRBCs). RESULTS: This model can produce a severe degree of infection presented by the high degree of parasitaemia followed by death 6-7 days post infection. Severe anemia, splenomegaly, hepatomegaly and discolourations of major organs were observed. Histopathological findings revealed several important features mimicking human CM including, microvascular sequestration of PRBCs in major organs, particularly in the brain, hypertrophy and hyperplasia of the kupffer cells in the liver, pulmonary edema and hyaline membrane formation in the lungs and haemorrhages in the kidney's medulla and cortex. Proinflammatory cytokines TNFα, IFNγ, IL-1, IL-6 and IL-18, and anti-inflammatory cytokine IL-10 were all found to be elevated in the plasma of infected mice. CONCLUSION: This model can reproduce many of the important features of CM and therefore can be used as a tool to advance our understanding of the disease pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA