Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Prosthet Dent ; 130(4): 620-628, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34980473

RESUMO

STATEMENT OF PROBLEM: Lithium disilicate and 5 mol% yttria partially stabilized zirconia (5Y-PSZ) are commonly used for anterior restorations. However, studies comparing the durability of 5Y-PSZ and lithium disilicates are sparse. PURPOSE: The purpose of this in vitro study was to investigate the fracture load of anterior monolithic crowns made of 2 lithium disilicates and a 5Y-PSZ under dynamic loading. MATERIAL AND METHODS: Titanium abutments of the maxillary incisors were prepared (N=48, 8 for each group). Monolithic anterior crowns were made from the lithium disilicates (e.max CAD, Rosetta SM) and 5Y-PSZ (Katana UTML). After cementation, the specimens were stored in water for 24 hours and then thermocycled 10 000 times. Dynamic loading (70 N, 200 000 cycles, 1 Hz) was applied to half the specimens. The fracture load was measured by using a universal testing machine. The fracture patterns were analyzed and fractography applied. Two-way ANOVA and the Fisher exact test were used for statistical analysis (α=.05). RESULTS: The material and dynamic loading affected the fracture load of the anterior monolithic crowns (P<.05). However, there was no interaction between the material and the dynamic loading (P=.079). Both lithium disilicates had higher fracture loads than 5Y-PSZ (P<.05). The fracture load of each specimen was reduced after dynamic loading (P<.05). Lithium disilicate showed marginal and bulk fractures, and 5Y-PSZ presented catastrophic fractures (P<.001). CONCLUSIONS: 5Y-PSZ materials with large grains and low flexural strength may be less resistant to fractures under dynamic loading than lithium disilicates.

2.
J Adv Prosthodont ; 7(5): 392-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26576256

RESUMO

PURPOSE: The aim of this study was to evaluate the effect of metal primers on the bonding of dental alloys and veneer resin. Polyvinylpyrrolidone solution's tarnish effect on bonding strength was also investigated. MATERIALS AND METHODS: Disk-shape metal specimens (diameter 8 mm, thickness 1.5 mm) were made from 3 kinds of alloy (Co-Cr, Ti and Au-Ag-Pd alloy) and divided into 4 groups per each alloy. Half specimens (n=12 per group) in tarnished group were immersed into polyvinylpyrrolidone solution for 24 hours. In Co-Cr and Ti-alloy, Alloy Primer (MDP + VBATDT) and MAC-Bond II (MAC-10) were applied, while Alloy Primer and V-Primer (VBATDT) were applied to Au-Ag-Pd alloys. After surface treatment, veneering composite resin were applied and shear bond strength test were conducted. RESULTS: Alloy Primer showed higher shear bond strength than MAC-Bond II in Co-Cr alloys and Au-Ag-Pd alloy (P<.05). However, in Ti alloy, there was no significant difference between Alloy Primer and MAC-Bond II. Tarnished Co-Cr and Au-Ag-Pd alloy surfaces presented significantly decreased shear bond strength. CONCLUSION: Combined use of MDP and VBATDT were effective in bonding of the resin to Co-Cr and Au-Ag-Pd alloy. Tarnish using polyvinylpyrrolidone solution negatively affected on the bonding of veneer resin to Co-Cr and Au-Ag-Pd alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...